ScrapeMaster 3.0 - Installation Guide

curve arrowDiscover the project in action

Watch Video

1️⃣ Create a Virtual Environment

Run the following command to create and activate a virtual environment:

bash
python -m venv venv

2️⃣ Install Dependencies

Create a requirements.txt file and copy the following dependencies:

plaintext
openai
python-dotenv
pandas
pydantic
requests
beautifulsoup4
html2text
tiktoken
selenium
readability-lxml
streamlit
streamlit-tags
openpyxl

Then install all dependencies with:

bash
pip install -r requirements.txt

3️⃣ Add Your API Key

Create a .env file and add your OpenAI API key:

plaintext
OPENAI_API_KEY=sk-xxxxxxxx(place your own key)
GOOGLE_API_KEY=AIzaSyxxxxxxx
GROQ_API_KEY=gskxxxxxxxxx

4️⃣ Download ChromeDriver

Download ChromeDriver from the official website:Chrome for Testing availability

5️⃣ Create the Scraper Script

Save the following script as scraper.py:

python
import os
import random
import time
import re
import json
from datetime import datetime
from typing import List, Dict, Type
import pandas as pd
from bs4 import BeautifulSoup
from pydantic import BaseModel, Field, create_model
import html2text
import tiktoken
from dotenv import load_dotenv
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.common.by import By
from selenium.webdriver.common.action_chains import ActionChains
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from openai import OpenAI
import google.generativeai as genai
from groq import Groq
from assets import USER_AGENTS,PRICING,HEADLESS_OPTIONS,SYSTEM_MESSAGE,USER_MESSAGE,LLAMA_MODEL_FULLNAME,GROQ_LLAMA_MODEL_FULLNAME
load_dotenv()
# Set up the Chrome WebDriver options
def setup_selenium():
options = Options()
# Randomly select a user agent from the imported list
user_agent = random.choice(USER_AGENTS)
options.add_argument(f"user-agent={user_agent}")
# Add other options
for option in HEADLESS_OPTIONS:
options.add_argument(option)
# Specify the path to the ChromeDriver
service = Service(r"./chromedriver-win64/chromedriver.exe")
# Initialize the WebDriver
driver = webdriver.Chrome(service=service, options=options)
return driver
def click_accept_cookies(driver):
"""
Tries to find and click on a cookie consent button. It looks for several common patterns.
"""
try:
# Wait for cookie popup to load
WebDriverWait(driver, 10).until(
EC.presence_of_element_located((By.XPATH, "//button | //a | //div"))
)
# Common text variations for cookie buttons
accept_text_variations = [
"accept", "agree", "allow", "consent", "continue", "ok", "I agree", "got it"
]
# Iterate through different element types and common text variations
for tag in ["button", "a", "div"]:
for text in accept_text_variations:
try:
# Create an XPath to find the button by text
element = driver.find_element(By.XPATH, f"//{tag}[contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), '{text}')]")
if element:
element.click()
print(f"Clicked the '{text}' button.")
return
except:
continue
print("No 'Accept Cookies' button found.")
except Exception as e:
print(f"Error finding 'Accept Cookies' button: {e}")
def fetch_html_selenium(url):
driver = setup_selenium()
try:
driver.get(url)
# Add random delays to mimic human behavior
time.sleep(1) # Adjust this to simulate time for user to read or interact
driver.maximize_window()
# Try to find and click the 'Accept Cookies' button
# click_accept_cookies(driver)
# Add more realistic actions like scrolling
driver.execute_script("window.scrollTo(0, document.body.scrollHeight/2);")
time.sleep(random.uniform(1.1, 1.8)) # Simulate time taken to scroll and read
driver.execute_script("window.scrollTo(0, document.body.scrollHeight/1.2);")
time.sleep(random.uniform(1.1, 1.8))
driver.execute_script("window.scrollTo(0, document.body.scrollHeight/1);")
time.sleep(random.uniform(1.1, 2.1))
html = driver.page_source
return html
finally:
driver.quit()
def clean_html(html_content):
soup = BeautifulSoup(html_content, 'html.parser')
# Remove headers and footers based on common HTML tags or classes
for element in soup.find_all(['header', 'footer']):
element.decompose() # Remove these tags and their content
return str(soup)
def html_to_markdown_with_readability(html_content):
cleaned_html = clean_html(html_content)
# Convert to markdown
markdown_converter = html2text.HTML2Text()
markdown_converter.ignore_links = False
markdown_content = markdown_converter.handle(cleaned_html)
return markdown_content
def save_raw_data(raw_data: str, output_folder: str, file_name: str):
"""Save raw markdown data to the specified output folder."""
os.makedirs(output_folder, exist_ok=True)
raw_output_path = os.path.join(output_folder, file_name)
with open(raw_output_path, 'w', encoding='utf-8') as f:
f.write(raw_data)
print(f"Raw data saved to {raw_output_path}")
return raw_output_path
def remove_urls_from_file(file_path):
# Regex pattern to find URLs
url_pattern = r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+'
# Construct the new file name
base, ext = os.path.splitext(file_path)
new_file_path = f"{base}_cleaned{ext}"
# Read the original markdown content
with open(file_path, 'r', encoding='utf-8') as file:
markdown_content = file.read()
# Replace all found URLs with an empty string
cleaned_content = re.sub(url_pattern, '', markdown_content)
# Write the cleaned content to a new file
with open(new_file_path, 'w', encoding='utf-8') as file:
file.write(cleaned_content)
print(f"Cleaned file saved as: {new_file_path}")
return cleaned_content
def create_dynamic_listing_model(field_names: List[str]) -> Type[BaseModel]:
"""
Dynamically creates a Pydantic model based on provided fields.
field_name is a list of names of the fields to extract from the markdown.
"""
# Create field definitions using aliases for Field parameters
field_definitions = {field: (str, ...) for field in field_names}
# Dynamically create the model with all field
return create_model('DynamicListingModel', **field_definitions)
def create_listings_container_model(listing_model: Type[BaseModel]) -> Type[BaseModel]:
"""
Create a container model that holds a list of the given listing model.
"""
return create_model('DynamicListingsContainer', listings=(List[listing_model], ...))
def trim_to_token_limit(text, model, max_tokens=120000):
encoder = tiktoken.encoding_for_model(model)
tokens = encoder.encode(text)
if len(tokens) > max_tokens:
trimmed_text = encoder.decode(tokens[:max_tokens])
return trimmed_text
return text
def generate_system_message(listing_model: BaseModel) -> str:
"""
Dynamically generate a system message based on the fields in the provided listing model.
"""
# Use the model_json_schema() method to introspect the Pydantic model
schema_info = listing_model.model_json_schema()
# Extract field descriptions from the schema
field_descriptions = []
for field_name, field_info in schema_info["properties"].items():
# Get the field type from the schema info
field_type = field_info["type"]
field_descriptions.append(f'"{field_name}": "{field_type}"')
# Create the JSON schema structure for the listings
schema_structure = ",\n".join(field_descriptions)
# Generate the system message dynamically
system_message = f"""
You are an intelligent text extraction and conversion assistant. Your task is to extract structured information
from the given text and convert it into a pure JSON format. The JSON should contain only the structured data extracted from the text,
with no additional commentary, explanations, or extraneous information.
You could encounter cases where you can't find the data of the fields you have to extract or the data will be in a foreign language.
Please process the following text and provide the output in pure JSON format with no words before or after the JSON:
Please ensure the output strictly follows this schema:
{{
"listings": [
{{
{schema_structure}
}}
]
}} """
return system_message
def format_data(data, DynamicListingsContainer, DynamicListingModel, selected_model):
token_counts = {}
if selected_model in ["gpt-4o-mini", "gpt-4o-2024-08-06"]:
# Use OpenAI API
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))
completion = client.beta.chat.completions.parse(
model=selected_model,
messages=[
{"role": "system", "content": SYSTEM_MESSAGE},
{"role": "user", "content": USER_MESSAGE + data},
],
response_format=DynamicListingsContainer
)
# Calculate tokens using tiktoken
encoder = tiktoken.encoding_for_model(selected_model)
input_token_count = len(encoder.encode(USER_MESSAGE + data))
output_token_count = len(encoder.encode(json.dumps(completion.choices[0].message.parsed.dict())))
token_counts = {
"input_tokens": input_token_count,
"output_tokens": output_token_count
}
return completion.choices[0].message.parsed, token_counts
elif selected_model == "gemini-1.5-flash":
# Use Google Gemini API
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
model = genai.GenerativeModel('gemini-1.5-flash',
generation_config={
"response_mime_type": "application/json",
"response_schema": DynamicListingsContainer
})
prompt = SYSTEM_MESSAGE + "\n" + USER_MESSAGE + data
# Count input tokens using Gemini's method
input_tokens = model.count_tokens(prompt)
completion = model.generate_content(prompt)
# Extract token counts from usage_metadata
usage_metadata = completion.usage_metadata
token_counts = {
"input_tokens": usage_metadata.prompt_token_count,
"output_tokens": usage_metadata.candidates_token_count
}
return completion.text, token_counts
elif selected_model == "Llama3.1 8B":
# Dynamically generate the system message based on the schema
sys_message = generate_system_message(DynamicListingModel)
# print(SYSTEM_MESSAGE)
# Point to the local server
client = OpenAI(base_url="http://localhost:1234/v1", api_key="lm-studio")
completion = client.chat.completions.create(
model=LLAMA_MODEL_FULLNAME, #change this if needed (use a better model)
messages=[
{"role": "system", "content": sys_message},
{"role": "user", "content": USER_MESSAGE + data}
],
temperature=0.7,
)
# Extract the content from the response
response_content = completion.choices[0].message.content
print(response_content)
# Convert the content from JSON string to a Python dictionary
parsed_response = json.loads(response_content)
# Extract token usage
token_counts = {
"input_tokens": completion.usage.prompt_tokens,
"output_tokens": completion.usage.completion_tokens
}
return parsed_response, token_counts
elif selected_model== "Groq Llama3.1 70b":
# Dynamically generate the system message based on the schema
sys_message = generate_system_message(DynamicListingModel)
# print(SYSTEM_MESSAGE)
# Point to the local server
client = Groq(api_key=os.environ.get("GROQ_API_KEY"),)
completion = client.chat.completions.create(
messages=[
{"role": "system","content": sys_message},
{"role": "user","content": USER_MESSAGE + data}
],
model=GROQ_LLAMA_MODEL_FULLNAME,
)
# Extract the content from the response
response_content = completion.choices[0].message.content
# Convert the content from JSON string to a Python dictionary
parsed_response = json.loads(response_content)
# completion.usage
token_counts = {
"input_tokens": completion.usage.prompt_tokens,
"output_tokens": completion.usage.completion_tokens
}
return parsed_response, token_counts
else:
raise ValueError(f"Unsupported model: {selected_model}")
def save_formatted_data(formatted_data, output_folder: str, json_file_name: str, excel_file_name: str):
"""Save formatted data as JSON and Excel in the specified output folder."""
os.makedirs(output_folder, exist_ok=True)
# Parse the formatted data if it's a JSON string (from Gemini API)
if isinstance(formatted_data, str):
try:
formatted_data_dict = json.loads(formatted_data)
except json.JSONDecodeError:
raise ValueError("The provided formatted data is a string but not valid JSON.")
else:
# Handle data from OpenAI or other sources
formatted_data_dict = formatted_data.dict() if hasattr(formatted_data, 'dict') else formatted_data
# Save the formatted data as JSON
json_output_path = os.path.join(output_folder, json_file_name)
with open(json_output_path, 'w', encoding='utf-8') as f:
json.dump(formatted_data_dict, f, indent=4)
print(f"Formatted data saved to JSON at {json_output_path}")
# Prepare data for DataFrame
if isinstance(formatted_data_dict, dict):
# If the data is a dictionary containing lists, assume these lists are records
data_for_df = next(iter(formatted_data_dict.values())) if len(formatted_data_dict) == 1 else formatted_data_dict
elif isinstance(formatted_data_dict, list):
data_for_df = formatted_data_dict
else:
raise ValueError("Formatted data is neither a dictionary nor a list, cannot convert to DataFrame")
# Create DataFrame
try:
df = pd.DataFrame(data_for_df)
print("DataFrame created successfully.")
# Save the DataFrame to an Excel file
excel_output_path = os.path.join(output_folder, excel_file_name)
df.to_excel(excel_output_path, index=False)
print(f"Formatted data saved to Excel at {excel_output_path}")
return df
except Exception as e:
print(f"Error creating DataFrame or saving Excel: {str(e)}")
return None
def calculate_price(token_counts, model):
input_token_count = token_counts.get("input_tokens", 0)
output_token_count = token_counts.get("output_tokens", 0)
# Calculate the costs
input_cost = input_token_count * PRICING[model]["input"]
output_cost = output_token_count * PRICING[model]["output"]
total_cost = input_cost + output_cost
return input_token_count, output_token_count, total_cost
def generate_unique_folder_name(url):
timestamp = datetime.now().strftime('%Y_%m_%d__%H_%M_%S')
url_name = re.sub(r'\W+', '_', url.split('//')[1].split('/')[0]) # Extract domain name and replace non-alphanumeric characters
return f"{url_name}_{timestamp}"
def scrape_multiple_urls(urls, fields, selected_model):
output_folder = os.path.join('output', generate_unique_folder_name(urls[0]))
os.makedirs(output_folder, exist_ok=True)
total_input_tokens = 0
total_output_tokens = 0
total_cost = 0
all_data = []
markdown = None # We'll store the markdown for the first (or only) URL
for i, url in enumerate(urls, start=1):
raw_html = fetch_html_selenium(url)
current_markdown = html_to_markdown_with_readability(raw_html)
if i == 1:
markdown = current_markdown # Store markdown for the first URL
input_tokens, output_tokens, cost, formatted_data = scrape_url(url, fields, selected_model, output_folder, i, current_markdown)
total_input_tokens += input_tokens
total_output_tokens += output_tokens
total_cost += cost
all_data.append(formatted_data)
return output_folder, total_input_tokens, total_output_tokens, total_cost, all_data, markdown
def scrape_url(url: str, fields: List[str], selected_model: str, output_folder: str, file_number: int, markdown: str):
"""Scrape a single URL and save the results."""
try:
# Save raw data
save_raw_data(markdown, output_folder, f'rawData_{file_number}.md')
# Create the dynamic listing model
DynamicListingModel = create_dynamic_listing_model(fields)
# Create the container model that holds a list of the dynamic listing models
DynamicListingsContainer = create_listings_container_model(DynamicListingModel)
# Format data
formatted_data, token_counts = format_data(markdown, DynamicListingsContainer, DynamicListingModel, selected_model)
# Save formatted data
save_formatted_data(formatted_data, output_folder, f'sorted_data_{file_number}.json', f'sorted_data_{file_number}.xlsx')
# Calculate and return token usage and cost
input_tokens, output_tokens, total_cost = calculate_price(token_counts, selected_model)
return input_tokens, output_tokens, total_cost, formatted_data
except Exception as e:
print(f"An error occurred while processing {url}: {e}")
return 0, 0, 0, None

6️⃣ Create the Streamlit App

Save the following as streamlit_app.py:

python
import streamlit as st
from streamlit_tags import st_tags_sidebar
import pandas as pd
import json
from datetime import datetime
from scraper import fetch_html_selenium, save_raw_data, format_data, save_formatted_data, calculate_price, html_to_markdown_with_readability, create_dynamic_listing_model, create_listings_container_model, scrape_url
from pagination_detector import detect_pagination_elements, PaginationData
import re
from urllib.parse import urlparse
from assets import PRICING
import os
from pydantic import BaseModel
def serialize_pydantic(obj):
if isinstance(obj, BaseModel):
return obj.dict()
raise TypeError(f'Object of type {obj.__class__.__name__} is not JSON serializable')
# Initialize Streamlit app
st.set_page_config(page_title="Universal Web Scraper", page_icon="🦑")
st.title("Universal Web Scraper 🦑")
# Initialize session state variables if they don't exist
if 'results' not in st.session_state:
st.session_state['results'] = None
if 'perform_scrape' not in st.session_state:
st.session_state['perform_scrape'] = False
# Sidebar components
st.sidebar.title("Web Scraper Settings")
model_selection = st.sidebar.selectbox("Select Model", options=list(PRICING.keys()), index=0)
url_input = st.sidebar.text_input("Enter URL(s) separated by whitespace")
# Add toggle to show/hide tags field
show_tags = st.sidebar.toggle("Enable Scraping")
# Conditionally show tags input based on the toggle
tags = []
if show_tags:
tags = st_tags_sidebar(
label='Enter Fields to Extract:',
text='Press enter to add a tag',
value=[],
suggestions=[],
maxtags=-1,
key='tags_input'
)
st.sidebar.markdown("---")
# Add pagination toggle and input
use_pagination = st.sidebar.toggle("Enable Pagination")
pagination_details = None
if use_pagination:
pagination_details = st.sidebar.text_input("Enter Pagination Details (optional)",
help="Describe how to navigate through pages (e.g., 'Next' button class, URL pattern)")
st.sidebar.markdown("---")
def generate_unique_folder_name(url):
timestamp = datetime.now().strftime('%Y_%m_%d__%H_%M_%S')
# Parse the URL
parsed_url = urlparse(url)
# Extract the domain name
domain = parsed_url.netloc or parsed_url.path.split('/')[0]
# Remove 'www.' if present
domain = re.sub(r'^www\.', '', domain)
# Remove any non-alphanumeric characters and replace with underscores
clean_domain = re.sub(r'\W+', '_', domain)
return f"{clean_domain}_{timestamp}"
def scrape_multiple_urls(urls, fields, selected_model):
output_folder = os.path.join('output', generate_unique_folder_name(urls[0]))
os.makedirs(output_folder, exist_ok=True)
total_input_tokens = 0
total_output_tokens = 0
total_cost = 0
all_data = []
first_url_markdown = None
for i, url in enumerate(urls, start=1):
raw_html = fetch_html_selenium(url)
markdown = html_to_markdown_with_readability(raw_html)
if i == 1:
first_url_markdown = markdown
input_tokens, output_tokens, cost, formatted_data = scrape_url(url, fields, selected_model, output_folder, i, markdown)
total_input_tokens += input_tokens
total_output_tokens += output_tokens
total_cost += cost
all_data.append(formatted_data)
return output_folder, total_input_tokens, total_output_tokens, total_cost, all_data, first_url_markdown
# Define the scraping function
def perform_scrape():
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
raw_html = fetch_html_selenium(url_input)
markdown = html_to_markdown_with_readability(raw_html)
save_raw_data(markdown, timestamp)
# Detect pagination if enabled
pagination_info = None
if use_pagination:
pagination_data, token_counts, pagination_price = detect_pagination_elements(
url_input, pagination_details, model_selection, markdown
)
pagination_info = {
"page_urls": pagination_data.page_urls,
"token_counts": token_counts,
"price": pagination_price
}
# Initialize token and cost variables with default values
input_tokens = 0
output_tokens = 0
total_cost = 0
if show_tags:
DynamicListingModel = create_dynamic_listing_model(tags)
DynamicListingsContainer = create_listings_container_model(DynamicListingModel)
formatted_data, tokens_count = format_data(
markdown, DynamicListingsContainer, DynamicListingModel, model_selection
)
input_tokens, output_tokens, total_cost = calculate_price(tokens_count, model=model_selection)
df = save_formatted_data(formatted_data, timestamp)
else:
formatted_data = None
df = None
return df, formatted_data, markdown, input_tokens, output_tokens, total_cost, timestamp, pagination_info
if st.sidebar.button("Scrape"):
with st.spinner('Please wait... Data is being scraped.'):
urls = url_input.split()
field_list = tags
output_folder, total_input_tokens, total_output_tokens, total_cost, all_data, first_url_markdown = scrape_multiple_urls(urls, field_list, model_selection)
# Perform pagination if enabled and only one URL is provided
pagination_info = None
if use_pagination and len(urls) == 1:
try:
pagination_result = detect_pagination_elements(
urls[0], pagination_details, model_selection, first_url_markdown
)
if pagination_result is not None:
pagination_data, token_counts, pagination_price = pagination_result
# Handle both PaginationData objects and dictionaries
if isinstance(pagination_data, PaginationData):
page_urls = pagination_data.page_urls
elif isinstance(pagination_data, dict):
page_urls = pagination_data.get("page_urls", [])
else:
page_urls = []
pagination_info = {
"page_urls": page_urls,
"token_counts": token_counts,
"price": pagination_price
}
else:
st.warning("Pagination detection returned None. No pagination information available.")
except Exception as e:
st.error(f"An error occurred during pagination detection: {e}")
pagination_info = {
"page_urls": [],
"token_counts": {"input_tokens": 0, "output_tokens": 0},
"price": 0.0
}
st.session_state['results'] = (all_data, None, first_url_markdown, total_input_tokens, total_output_tokens, total_cost, output_folder, pagination_info)
st.session_state['perform_scrape'] = True
# Display results if they exist in session state
if st.session_state['results']:
all_data, _, _, input_tokens, output_tokens, total_cost, output_folder, pagination_info = st.session_state['results']
# Display scraping details in sidebar only if scraping was performed and the toggle is on
if all_data and show_tags:
st.sidebar.markdown("---")
st.sidebar.markdown("### Scraping Details")
st.sidebar.markdown("#### Token Usage")
st.sidebar.markdown(f"*Input Tokens:* {input_tokens}")
st.sidebar.markdown(f"*Output Tokens:* {output_tokens}")
st.sidebar.markdown(f"**Total Cost:** :green-background[**${total_cost:.4f}**]")
# Display scraped data in main area
st.subheader("Scraped/Parsed Data")
for i, data in enumerate(all_data, start=1):
st.write(f"Data from URL {i}:")
# Handle string data (convert to dict if it's JSON)
if isinstance(data, str):
try:
data = json.loads(data)
except json.JSONDecodeError:
st.error(f"Failed to parse data as JSON for URL {i}")
continue
if isinstance(data, dict):
if 'listings' in data and isinstance(data['listings'], list):
df = pd.DataFrame(data['listings'])
else:
# If 'listings' is not in the dict or not a list, use the entire dict
df = pd.DataFrame([data])
elif hasattr(data, 'listings') and isinstance(data.listings, list):
# Handle the case where data is a Pydantic model
listings = [item.dict() for item in data.listings]
df = pd.DataFrame(listings)
else:
st.error(f"Unexpected data format for URL {i}")
continue
# Display the dataframe
st.dataframe(df, use_container_width=True)
# Download options
st.subheader("Download Options")
col1, col2 = st.columns(2)
with col1:
json_data = json.dumps(all_data, default=lambda o: o.dict() if hasattr(o, 'dict') else str(o), indent=4)
st.download_button(
"Download JSON",
data=json_data,
file_name="scraped_data.json"
)
with col2:
# Convert all data to a single DataFrame
all_listings = []
for data in all_data:
if isinstance(data, str):
try:
data = json.loads(data)
except json.JSONDecodeError:
continue
if isinstance(data, dict) and 'listings' in data:
all_listings.extend(data['listings'])
elif hasattr(data, 'listings'):
all_listings.extend([item.dict() for item in data.listings])
else:
all_listings.append(data)
combined_df = pd.DataFrame(all_listings)
st.download_button(
"Download CSV",
data=combined_df.to_csv(index=False),
file_name="scraped_data.csv"
)
st.success(f"Scraping completed. Results saved in {output_folder}")
# Add pagination details to sidebar
if pagination_info and use_pagination:
st.sidebar.markdown("---")
st.sidebar.markdown("### Pagination Details")
st.sidebar.markdown(f"**Number of Page URLs:** {len(pagination_info['page_urls'])}")
st.sidebar.markdown("#### Pagination Token Usage")
st.sidebar.markdown(f"*Input Tokens:* {pagination_info['token_counts']['input_tokens']}")
st.sidebar.markdown(f"*Output Tokens:* {pagination_info['token_counts']['output_tokens']}")
st.sidebar.markdown(f"**Pagination Cost:** :red-background[**${pagination_info['price']:.4f}**]")
st.markdown("---")
st.subheader("Pagination Information")
pagination_df = pd.DataFrame(pagination_info["page_urls"], columns=["Page URLs"])
st.dataframe(
pagination_df,
column_config={
"Page URLs": st.column_config.LinkColumn("Page URLs")
},use_container_width=True
)
# Create columns for download buttons
col1, col2 = st.columns(2)
with col1:
st.download_button(
"Download Pagination JSON",
data=json.dumps(pagination_info["page_urls"], indent=4),
file_name=f"pagination_urls.json"
)
with col2:
st.download_button(
"Download Pagination CSV",
data=pagination_df.to_csv(index=False),
file_name=f"pagination_urls.csv"
)
# Display combined totals only if both scraping and pagination were performed and both toggles are on
if all_data and pagination_info and show_tags and use_pagination:
st.markdown("---")
total_input_tokens = input_tokens + pagination_info['token_counts']['input_tokens']
total_output_tokens = output_tokens + pagination_info['token_counts']['output_tokens']
total_combined_cost = total_cost + pagination_info['price']
st.markdown("### Total Counts and Cost (Including Pagination)")
st.markdown(f"**Total Input Tokens:** {total_input_tokens}")
st.markdown(f"**Total Output Tokens:** {total_output_tokens}")
st.markdown(f"**Total Combined Cost:** :green[**${total_combined_cost:.4f}**]")
# Add a clear results button
if st.sidebar.button("Clear Results"):
st.session_state['results'] = None
st.session_state['perform_scrape'] = False
st.rerun()

7️⃣ Create the assets.py

Save the following as assets.py:

python
"""
This module contains configuration variables and constants
that are used across different parts of the application.
"""
# List of user agents to mimic different users
USER_AGENTS = [
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.114 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:89.0) Gecko/20100101 Firefox/89.0",
"Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.96 Safari/537.36",
"Mozilla/5.0 (iPhone; CPU iPhone OS 14_6 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Mobile/15E148 Safari/604.1",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.107 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.93 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.1 Safari/605.1.15",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.82 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:91.0) Gecko/20100101 Firefox/91.0",
"Mozilla/5.0 (X11; Linux x86_64; rv:90.0) Gecko/20100101 Firefox/90.0",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.150 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.66 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 11_0_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.96 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.106 Safari/537.36",
"Mozilla/5.0 (X11; Linux x86_64; rv:89.0) Gecko/20100101 Firefox/89.0",
"Mozilla/5.0 (iPhone; CPU iPhone OS 13_6 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/13.1.2 Mobile/15E148 Safari/604.1",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Safari/605.1.15",
"Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.114 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:88.0) Gecko/20100101 Firefox/88.0",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.212 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 11_0_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Safari/605.1.15",
"Mozilla/5.0 (iPhone; CPU iPhone OS 13_5_1 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/13.0 Mobile/15E148 Safari/604.1",
"Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:91.0) Gecko/20100101 Firefox/91.0",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.212 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.114 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0.1 Safari/605.1.15",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:87.0) Gecko/20100101 Firefox/87.0",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.101 Safari/537.36",
"Mozilla/5.0 (iPhone; CPU iPhone OS 14_5_1 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Mobile/15E148 Safari/604.1",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.77 Safari/537.36",
"Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:89.0) Gecko/20100101 Firefox/89.0",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.77 Safari/537.36",
"Mozilla/5.0 (iPhone; CPU iPhone OS 14_4 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Mobile/15E148 Safari/604.1",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.85 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.85 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:86.0) Gecko/20100101 Firefox/86.0",
"Mozilla/5.0 (iPhone; CPU iPhone OS 14_3 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Mobile/15E148 Safari/604.1",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 11_2_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.114 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:85.0) Gecko/20100101 Firefox/85.0",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Safari/605.1.15",
"Mozilla/5.0 (X11; Linux x86_64; rv:85.0) Gecko/20100101 Firefox/85.0",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.150 Safari/537.36",
"Mozilla/5.0 (iPhone; CPU iPhone OS 13_7 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/13.0 Mobile/15E148 Safari/604.1",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.82 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Safari/605.1.15",
"Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.66 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.114 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.141 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.77 Safari/537.36",
"Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.77 Safari/537.36"
]
# Define the pricing for models without Batch API
PRICING = {
"gpt-4o-mini": {
"input": 0.150 / 1_000_000, # $0.150 per 1M input tokens
"output": 0.600 / 1_000_000, # $0.600 per 1M output tokens
},
"gpt-4o-2024-08-06": {
"input": 2.5 / 1_000_000, # $2.5 per 1M input tokens
"output": 10 / 1_000_000, # $10 per 1M output tokens
},
"gemini-1.5-flash": {
"input": 0.075 / 1_000_000, # $0.075 per 1M input tokens
"output": 0.30 / 1_000_000, # $0.30 per 1M output tokens
},
"Llama3.1 8B": {
"input": 0 , # Free
"output": 0 , # Free
},
"Groq Llama3.1 70b": {
"input": 0 , # Free
"output": 0 , # Free
},
# Add other models and their prices here if needed
}
# Timeout settings for web scraping
TIMEOUT_SETTINGS = {
"page_load": 30,
"script": 10
}
# Other reusable constants or configuration settings
HEADLESS_OPTIONS = ["--disable-gpu", "--disable-dev-shm-usage","--window-size=1920,1080","--disable-search-engine-choice-screen"]
#in case you don't need to open the website
##HEADLESS_OPTIONS=HEADLESS_OPTIONS+[ "--headless=new"]
#number of scrolls
NUMBER_SCROLL=2
LLAMA_MODEL_FULLNAME="lmstudio-community/Meta-Llama-3.1-8B-Instruct-GGUF"
GROQ_LLAMA_MODEL_FULLNAME="llama-3.1-70b-versatile"
SYSTEM_MESSAGE = """You are an intelligent text extraction and conversion assistant. Your task is to extract structured information
from the given text and convert it into a pure JSON format. The JSON should contain only the structured data extracted from the text,
with no additional commentary, explanations, or extraneous information.
You could encounter cases where you can't find the data of the fields you have to extract or the data will be in a foreign language.
Please process the following text and provide the output in pure JSON format with no words before or after the JSON:"""
USER_MESSAGE = f"Extract the following information from the provided text:\nPage content:\n\n"
PROMPT_PAGINATION = """
You are an assistant that extracts pagination elements from markdown content of websites your goal as a universal pagination scrapper of urls from all websites no matter how different they are.
Please extract the following:
- The url of the 'Next', 'More', 'See more', 'load more' or any other button indicating how to access the next page, if any, it should be 1 url and no more, if there are multiple urls with the same structure leave this empty.
- A list of page URLs for pagination it should be a pattern of similar urls with pages that are numbered, if you detect this pattern and the numbers starts from a certain low number until a large number generate the rest of the urls even if they're not included,
your goal here is to give as many urls for the user to choose from in order for them to do further scraping, you will have to deal with very different websites that can potientially have so many urls of images and other elements,
detect only the urls that are clearly defining a pattern to show data on multiple pages, sometimes there is only a part of these urls and you have to combine it with the initial url, that will be provided for you at the end of this prompt.
- The user can give you indications on how the pagination works for the specific website at the end of this prompt, if those indications are not empty pay special attention to them as they will directly help you understand the structure and the number of pages to generate.
Provide the output as a JSON object with the following structure:
{
"page_urls": ["url1", "url2", "url3",...,"urlN"]
}
Do not include any additional text or explanations.
"""

8️⃣ Create the pagination_detector.py

Save the following as pagination_detector.py:

python
# pagination_detector.py
import os
import json
from typing import List, Dict, Tuple, Union
from pydantic import BaseModel, Field, ValidationError
import tiktoken
from dotenv import load_dotenv
from openai import OpenAI
import google.generativeai as genai
from groq import Groq
from assets import PROMPT_PAGINATION, PRICING, LLAMA_MODEL_FULLNAME, GROQ_LLAMA_MODEL_FULLNAME
load_dotenv()
import logging
class PaginationData(BaseModel):
page_urls: List[str] = Field(default_factory=list, description="List of pagination URLs, including 'Next' button URL if present")
def calculate_pagination_price(token_counts: Dict[str, int], model: str) -> float:
"""
Calculate the price for pagination based on token counts and the selected model.
Args:
token_counts (Dict[str, int]): A dictionary containing 'input_tokens' and 'output_tokens'.
model (str): The name of the selected model.
Returns:
float: The total price for the pagination operation.
"""
input_tokens = token_counts['input_tokens']
output_tokens = token_counts['output_tokens']
input_price = input_tokens * PRICING[model]['input']
output_price = output_tokens * PRICING[model]['output']
return input_price + output_price
def detect_pagination_elements(url: str, indications: str, selected_model: str, markdown_content: str) -> Tuple[Union[PaginationData, Dict, str], Dict, float]:
try:
"""
Uses AI models to analyze markdown content and extract pagination elements.
Args:
selected_model (str): The name of the OpenAI model to use.
markdown_content (str): The markdown content to analyze.
Returns:
Tuple[PaginationData, Dict, float]: Parsed pagination data, token counts, and pagination price.
"""
prompt_pagination = PROMPT_PAGINATION+"\n The url of the page to extract pagination from "+url+"if the urls that you find are not complete combine them intelligently in a way that fit the pattern **ALWAYS GIVE A FULL URL**"
if indications != "":
prompt_pagination +=PROMPT_PAGINATION+"\n\n these are the users indications that, pay special attention to them: "+indications+"\n\n below are the markdowns of the website: \n\n"
else:
prompt_pagination +=PROMPT_PAGINATION+"\n There are no user indications in this case just apply the logic described. \n\n below are the markdowns of the website: \n\n"
if selected_model in ["gpt-4o-mini", "gpt-4o-2024-08-06"]:
# Use OpenAI API
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))
completion = client.beta.chat.completions.parse(
model=selected_model,
messages=[
{"role": "system", "content": prompt_pagination},
{"role": "user", "content": markdown_content},
],
response_format=PaginationData
)
# Extract the parsed response
parsed_response = completion.choices[0].message.parsed
# Calculate tokens using tiktoken
encoder = tiktoken.encoding_for_model(selected_model)
input_token_count = len(encoder.encode(markdown_content))
output_token_count = len(encoder.encode(json.dumps(parsed_response.dict())))
token_counts = {
"input_tokens": input_token_count,
"output_tokens": output_token_count
}
# Calculate the price
pagination_price = calculate_pagination_price(token_counts, selected_model)
return parsed_response, token_counts, pagination_price
elif selected_model == "gemini-1.5-flash":
# Use Google Gemini API
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
model = genai.GenerativeModel(
'gemini-1.5-flash',
generation_config={
"response_mime_type": "application/json",
"response_schema": PaginationData
}
)
prompt = f"{prompt_pagination}\n{markdown_content}"
# Count input tokens using Gemini's method
input_tokens = model.count_tokens(prompt)
completion = model.generate_content(prompt)
# Extract token counts from usage_metadata
usage_metadata = completion.usage_metadata
token_counts = {
"input_tokens": usage_metadata.prompt_token_count,
"output_tokens": usage_metadata.candidates_token_count
}
# Get the result
response_content = completion.text
# Log the response content and its type
logging.info(f"Gemini Flash response type: {type(response_content)}")
logging.info(f"Gemini Flash response content: {response_content}")
# Try to parse the response as JSON
try:
parsed_data = json.loads(response_content)
if isinstance(parsed_data, dict) and 'page_urls' in parsed_data:
pagination_data = PaginationData(**parsed_data)
else:
pagination_data = PaginationData(page_urls=[])
except json.JSONDecodeError:
logging.error("Failed to parse Gemini Flash response as JSON")
pagination_data = PaginationData(page_urls=[])
# Calculate the price
pagination_price = calculate_pagination_price(token_counts, selected_model)
return pagination_data, token_counts, pagination_price
elif selected_model == "Llama3.1 8B":
import openai
# Use Llama model via OpenAI API pointing to local server
openai.api_key = "lm-studio"
openai.api_base = "http://localhost:1234/v1"
response = openai.ChatCompletion.create(
model=LLAMA_MODEL_FULLNAME,
messages=[
{"role": "system", "content": prompt_pagination},
{"role": "user", "content": markdown_content},
],
temperature=0.7,
)
response_content = response['choices'][0]['message']['content'].strip()
# Try to parse the JSON
try:
pagination_data = json.loads(response_content)
except json.JSONDecodeError:
pagination_data = {"next_buttons": [], "page_urls": []}
# Token counts
token_counts = {
"input_tokens": response['usage']['prompt_tokens'],
"output_tokens": response['usage']['completion_tokens']
}
# Calculate the price
pagination_price = calculate_pagination_price(token_counts, selected_model)
return pagination_data, token_counts, pagination_price
elif selected_model == "Groq Llama3.1 70b":
# Use Groq client
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
response = client.chat.completions.create(
model=GROQ_LLAMA_MODEL_FULLNAME,
messages=[
{"role": "system", "content": prompt_pagination},
{"role": "user", "content": markdown_content},
],
)
response_content = response.choices[0].message.content.strip()
# Try to parse the JSON
try:
pagination_data = json.loads(response_content)
except json.JSONDecodeError:
pagination_data = {"page_urls": []}
# Token counts
token_counts = {
"input_tokens": response.usage.prompt_tokens,
"output_tokens": response.usage.completion_tokens
}
# Calculate the price
pagination_price = calculate_pagination_price(token_counts, selected_model)
# Ensure the pagination_data is a dictionary
if isinstance(pagination_data, PaginationData):
pagination_data = pagination_data.dict()
elif not isinstance(pagination_data, dict):
pagination_data = {"page_urls": []}
return pagination_data, token_counts, pagination_price
else:
raise ValueError(f"Unsupported model: {selected_model}")
except Exception as e:
logging.error(f"An error occurred in detect_pagination_elements: {e}")
# Return default values if an error occurs
return PaginationData(page_urls=[]), {"input_tokens": 0, "output_tokens": 0}, 0.0

9️⃣ Run the Streamlit App

Run the following command:

bash
streamlit run streamlit_app.py