ScrapeMaster 3.0 - Installation Guide
Discover the project in action
Watch Video1️⃣ Create a Virtual Environment
Run the following command to create and activate a virtual environment:
bash
python -m venv venv
2️⃣ Install Dependencies
Create a requirements.txt
file and copy the following dependencies:
plaintext
openaipython-dotenvpandaspydanticrequestsbeautifulsoup4html2texttiktokenseleniumreadability-lxmlstreamlitstreamlit-tagsopenpyxl
Then install all dependencies with:
bash
pip install -r requirements.txt
3️⃣ Add Your API Key
Create a .env
file and add your OpenAI API key:
plaintext
OPENAI_API_KEY=sk-xxxxxxxx(place your own key)GOOGLE_API_KEY=AIzaSyxxxxxxxGROQ_API_KEY=gskxxxxxxxxx
4️⃣ Download ChromeDriver
Download ChromeDriver from the official website:Chrome for Testing availability
5️⃣ Create the Scraper Script
Save the following script as scraper.py
:
python
import osimport randomimport timeimport reimport jsonfrom datetime import datetimefrom typing import List, Dict, Typeimport pandas as pdfrom bs4 import BeautifulSoupfrom pydantic import BaseModel, Field, create_modelimport html2textimport tiktokenfrom dotenv import load_dotenvfrom selenium import webdriverfrom selenium.webdriver.chrome.service import Servicefrom selenium.webdriver.chrome.options import Optionsfrom selenium.webdriver.common.by import Byfrom selenium.webdriver.common.action_chains import ActionChainsfrom selenium.webdriver.support.ui import WebDriverWaitfrom selenium.webdriver.support import expected_conditions as ECfrom openai import OpenAIimport google.generativeai as genaifrom groq import Groqfrom assets import USER_AGENTS,PRICING,HEADLESS_OPTIONS,SYSTEM_MESSAGE,USER_MESSAGE,LLAMA_MODEL_FULLNAME,GROQ_LLAMA_MODEL_FULLNAMEload_dotenv()# Set up the Chrome WebDriver optionsdef setup_selenium():options = Options()# Randomly select a user agent from the imported listuser_agent = random.choice(USER_AGENTS)options.add_argument(f"user-agent={user_agent}")# Add other optionsfor option in HEADLESS_OPTIONS:options.add_argument(option)# Specify the path to the ChromeDriverservice = Service(r"./chromedriver-win64/chromedriver.exe")# Initialize the WebDriverdriver = webdriver.Chrome(service=service, options=options)return driverdef click_accept_cookies(driver):"""Tries to find and click on a cookie consent button. It looks for several common patterns."""try:# Wait for cookie popup to loadWebDriverWait(driver, 10).until(EC.presence_of_element_located((By.XPATH, "//button | //a | //div")))# Common text variations for cookie buttonsaccept_text_variations = ["accept", "agree", "allow", "consent", "continue", "ok", "I agree", "got it"]# Iterate through different element types and common text variationsfor tag in ["button", "a", "div"]:for text in accept_text_variations:try:# Create an XPath to find the button by textelement = driver.find_element(By.XPATH, f"//{tag}[contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), '{text}')]")if element:element.click()print(f"Clicked the '{text}' button.")returnexcept:continueprint("No 'Accept Cookies' button found.")except Exception as e:print(f"Error finding 'Accept Cookies' button: {e}")def fetch_html_selenium(url):driver = setup_selenium()try:driver.get(url)# Add random delays to mimic human behaviortime.sleep(1) # Adjust this to simulate time for user to read or interactdriver.maximize_window()# Try to find and click the 'Accept Cookies' button# click_accept_cookies(driver)# Add more realistic actions like scrollingdriver.execute_script("window.scrollTo(0, document.body.scrollHeight/2);")time.sleep(random.uniform(1.1, 1.8)) # Simulate time taken to scroll and readdriver.execute_script("window.scrollTo(0, document.body.scrollHeight/1.2);")time.sleep(random.uniform(1.1, 1.8))driver.execute_script("window.scrollTo(0, document.body.scrollHeight/1);")time.sleep(random.uniform(1.1, 2.1))html = driver.page_sourcereturn htmlfinally:driver.quit()def clean_html(html_content):soup = BeautifulSoup(html_content, 'html.parser')# Remove headers and footers based on common HTML tags or classesfor element in soup.find_all(['header', 'footer']):element.decompose() # Remove these tags and their contentreturn str(soup)def html_to_markdown_with_readability(html_content):cleaned_html = clean_html(html_content)# Convert to markdownmarkdown_converter = html2text.HTML2Text()markdown_converter.ignore_links = Falsemarkdown_content = markdown_converter.handle(cleaned_html)return markdown_contentdef save_raw_data(raw_data: str, output_folder: str, file_name: str):"""Save raw markdown data to the specified output folder."""os.makedirs(output_folder, exist_ok=True)raw_output_path = os.path.join(output_folder, file_name)with open(raw_output_path, 'w', encoding='utf-8') as f:f.write(raw_data)print(f"Raw data saved to {raw_output_path}")return raw_output_pathdef remove_urls_from_file(file_path):# Regex pattern to find URLsurl_pattern = r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+'# Construct the new file namebase, ext = os.path.splitext(file_path)new_file_path = f"{base}_cleaned{ext}"# Read the original markdown contentwith open(file_path, 'r', encoding='utf-8') as file:markdown_content = file.read()# Replace all found URLs with an empty stringcleaned_content = re.sub(url_pattern, '', markdown_content)# Write the cleaned content to a new filewith open(new_file_path, 'w', encoding='utf-8') as file:file.write(cleaned_content)print(f"Cleaned file saved as: {new_file_path}")return cleaned_contentdef create_dynamic_listing_model(field_names: List[str]) -> Type[BaseModel]:"""Dynamically creates a Pydantic model based on provided fields.field_name is a list of names of the fields to extract from the markdown."""# Create field definitions using aliases for Field parametersfield_definitions = {field: (str, ...) for field in field_names}# Dynamically create the model with all fieldreturn create_model('DynamicListingModel', **field_definitions)def create_listings_container_model(listing_model: Type[BaseModel]) -> Type[BaseModel]:"""Create a container model that holds a list of the given listing model."""return create_model('DynamicListingsContainer', listings=(List[listing_model], ...))def trim_to_token_limit(text, model, max_tokens=120000):encoder = tiktoken.encoding_for_model(model)tokens = encoder.encode(text)if len(tokens) > max_tokens:trimmed_text = encoder.decode(tokens[:max_tokens])return trimmed_textreturn textdef generate_system_message(listing_model: BaseModel) -> str:"""Dynamically generate a system message based on the fields in the provided listing model."""# Use the model_json_schema() method to introspect the Pydantic modelschema_info = listing_model.model_json_schema()# Extract field descriptions from the schemafield_descriptions = []for field_name, field_info in schema_info["properties"].items():# Get the field type from the schema infofield_type = field_info["type"]field_descriptions.append(f'"{field_name}": "{field_type}"')# Create the JSON schema structure for the listingsschema_structure = ",\n".join(field_descriptions)# Generate the system message dynamicallysystem_message = f"""You are an intelligent text extraction and conversion assistant. Your task is to extract structured informationfrom the given text and convert it into a pure JSON format. The JSON should contain only the structured data extracted from the text,with no additional commentary, explanations, or extraneous information.You could encounter cases where you can't find the data of the fields you have to extract or the data will be in a foreign language.Please process the following text and provide the output in pure JSON format with no words before or after the JSON:Please ensure the output strictly follows this schema:{{"listings": [{{{schema_structure}}}]}} """return system_messagedef format_data(data, DynamicListingsContainer, DynamicListingModel, selected_model):token_counts = {}if selected_model in ["gpt-4o-mini", "gpt-4o-2024-08-06"]:# Use OpenAI APIclient = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))completion = client.beta.chat.completions.parse(model=selected_model,messages=[{"role": "system", "content": SYSTEM_MESSAGE},{"role": "user", "content": USER_MESSAGE + data},],response_format=DynamicListingsContainer)# Calculate tokens using tiktokenencoder = tiktoken.encoding_for_model(selected_model)input_token_count = len(encoder.encode(USER_MESSAGE + data))output_token_count = len(encoder.encode(json.dumps(completion.choices[0].message.parsed.dict())))token_counts = {"input_tokens": input_token_count,"output_tokens": output_token_count}return completion.choices[0].message.parsed, token_countselif selected_model == "gemini-1.5-flash":# Use Google Gemini APIgenai.configure(api_key=os.getenv("GOOGLE_API_KEY"))model = genai.GenerativeModel('gemini-1.5-flash',generation_config={"response_mime_type": "application/json","response_schema": DynamicListingsContainer})prompt = SYSTEM_MESSAGE + "\n" + USER_MESSAGE + data# Count input tokens using Gemini's methodinput_tokens = model.count_tokens(prompt)completion = model.generate_content(prompt)# Extract token counts from usage_metadatausage_metadata = completion.usage_metadatatoken_counts = {"input_tokens": usage_metadata.prompt_token_count,"output_tokens": usage_metadata.candidates_token_count}return completion.text, token_countselif selected_model == "Llama3.1 8B":# Dynamically generate the system message based on the schemasys_message = generate_system_message(DynamicListingModel)# print(SYSTEM_MESSAGE)# Point to the local serverclient = OpenAI(base_url="http://localhost:1234/v1", api_key="lm-studio")completion = client.chat.completions.create(model=LLAMA_MODEL_FULLNAME, #change this if needed (use a better model)messages=[{"role": "system", "content": sys_message},{"role": "user", "content": USER_MESSAGE + data}],temperature=0.7,)# Extract the content from the responseresponse_content = completion.choices[0].message.contentprint(response_content)# Convert the content from JSON string to a Python dictionaryparsed_response = json.loads(response_content)# Extract token usagetoken_counts = {"input_tokens": completion.usage.prompt_tokens,"output_tokens": completion.usage.completion_tokens}return parsed_response, token_countselif selected_model== "Groq Llama3.1 70b":# Dynamically generate the system message based on the schemasys_message = generate_system_message(DynamicListingModel)# print(SYSTEM_MESSAGE)# Point to the local serverclient = Groq(api_key=os.environ.get("GROQ_API_KEY"),)completion = client.chat.completions.create(messages=[{"role": "system","content": sys_message},{"role": "user","content": USER_MESSAGE + data}],model=GROQ_LLAMA_MODEL_FULLNAME,)# Extract the content from the responseresponse_content = completion.choices[0].message.content# Convert the content from JSON string to a Python dictionaryparsed_response = json.loads(response_content)# completion.usagetoken_counts = {"input_tokens": completion.usage.prompt_tokens,"output_tokens": completion.usage.completion_tokens}return parsed_response, token_countselse:raise ValueError(f"Unsupported model: {selected_model}")def save_formatted_data(formatted_data, output_folder: str, json_file_name: str, excel_file_name: str):"""Save formatted data as JSON and Excel in the specified output folder."""os.makedirs(output_folder, exist_ok=True)# Parse the formatted data if it's a JSON string (from Gemini API)if isinstance(formatted_data, str):try:formatted_data_dict = json.loads(formatted_data)except json.JSONDecodeError:raise ValueError("The provided formatted data is a string but not valid JSON.")else:# Handle data from OpenAI or other sourcesformatted_data_dict = formatted_data.dict() if hasattr(formatted_data, 'dict') else formatted_data# Save the formatted data as JSONjson_output_path = os.path.join(output_folder, json_file_name)with open(json_output_path, 'w', encoding='utf-8') as f:json.dump(formatted_data_dict, f, indent=4)print(f"Formatted data saved to JSON at {json_output_path}")# Prepare data for DataFrameif isinstance(formatted_data_dict, dict):# If the data is a dictionary containing lists, assume these lists are recordsdata_for_df = next(iter(formatted_data_dict.values())) if len(formatted_data_dict) == 1 else formatted_data_dictelif isinstance(formatted_data_dict, list):data_for_df = formatted_data_dictelse:raise ValueError("Formatted data is neither a dictionary nor a list, cannot convert to DataFrame")# Create DataFrametry:df = pd.DataFrame(data_for_df)print("DataFrame created successfully.")# Save the DataFrame to an Excel fileexcel_output_path = os.path.join(output_folder, excel_file_name)df.to_excel(excel_output_path, index=False)print(f"Formatted data saved to Excel at {excel_output_path}")return dfexcept Exception as e:print(f"Error creating DataFrame or saving Excel: {str(e)}")return Nonedef calculate_price(token_counts, model):input_token_count = token_counts.get("input_tokens", 0)output_token_count = token_counts.get("output_tokens", 0)# Calculate the costsinput_cost = input_token_count * PRICING[model]["input"]output_cost = output_token_count * PRICING[model]["output"]total_cost = input_cost + output_costreturn input_token_count, output_token_count, total_costdef generate_unique_folder_name(url):timestamp = datetime.now().strftime('%Y_%m_%d__%H_%M_%S')url_name = re.sub(r'\W+', '_', url.split('//')[1].split('/')[0]) # Extract domain name and replace non-alphanumeric charactersreturn f"{url_name}_{timestamp}"def scrape_multiple_urls(urls, fields, selected_model):output_folder = os.path.join('output', generate_unique_folder_name(urls[0]))os.makedirs(output_folder, exist_ok=True)total_input_tokens = 0total_output_tokens = 0total_cost = 0all_data = []markdown = None # We'll store the markdown for the first (or only) URLfor i, url in enumerate(urls, start=1):raw_html = fetch_html_selenium(url)current_markdown = html_to_markdown_with_readability(raw_html)if i == 1:markdown = current_markdown # Store markdown for the first URLinput_tokens, output_tokens, cost, formatted_data = scrape_url(url, fields, selected_model, output_folder, i, current_markdown)total_input_tokens += input_tokenstotal_output_tokens += output_tokenstotal_cost += costall_data.append(formatted_data)return output_folder, total_input_tokens, total_output_tokens, total_cost, all_data, markdowndef scrape_url(url: str, fields: List[str], selected_model: str, output_folder: str, file_number: int, markdown: str):"""Scrape a single URL and save the results."""try:# Save raw datasave_raw_data(markdown, output_folder, f'rawData_{file_number}.md')# Create the dynamic listing modelDynamicListingModel = create_dynamic_listing_model(fields)# Create the container model that holds a list of the dynamic listing modelsDynamicListingsContainer = create_listings_container_model(DynamicListingModel)# Format dataformatted_data, token_counts = format_data(markdown, DynamicListingsContainer, DynamicListingModel, selected_model)# Save formatted datasave_formatted_data(formatted_data, output_folder, f'sorted_data_{file_number}.json', f'sorted_data_{file_number}.xlsx')# Calculate and return token usage and costinput_tokens, output_tokens, total_cost = calculate_price(token_counts, selected_model)return input_tokens, output_tokens, total_cost, formatted_dataexcept Exception as e:print(f"An error occurred while processing {url}: {e}")return 0, 0, 0, None
6️⃣ Create the Streamlit App
Save the following as streamlit_app.py
:
python
import streamlit as stfrom streamlit_tags import st_tags_sidebarimport pandas as pdimport jsonfrom datetime import datetimefrom scraper import fetch_html_selenium, save_raw_data, format_data, save_formatted_data, calculate_price, html_to_markdown_with_readability, create_dynamic_listing_model, create_listings_container_model, scrape_urlfrom pagination_detector import detect_pagination_elements, PaginationDataimport refrom urllib.parse import urlparsefrom assets import PRICINGimport osfrom pydantic import BaseModeldef serialize_pydantic(obj):if isinstance(obj, BaseModel):return obj.dict()raise TypeError(f'Object of type {obj.__class__.__name__} is not JSON serializable')# Initialize Streamlit appst.set_page_config(page_title="Universal Web Scraper", page_icon="🦑")st.title("Universal Web Scraper 🦑")# Initialize session state variables if they don't existif 'results' not in st.session_state:st.session_state['results'] = Noneif 'perform_scrape' not in st.session_state:st.session_state['perform_scrape'] = False# Sidebar componentsst.sidebar.title("Web Scraper Settings")model_selection = st.sidebar.selectbox("Select Model", options=list(PRICING.keys()), index=0)url_input = st.sidebar.text_input("Enter URL(s) separated by whitespace")# Add toggle to show/hide tags fieldshow_tags = st.sidebar.toggle("Enable Scraping")# Conditionally show tags input based on the toggletags = []if show_tags:tags = st_tags_sidebar(label='Enter Fields to Extract:',text='Press enter to add a tag',value=[],suggestions=[],maxtags=-1,key='tags_input')st.sidebar.markdown("---")# Add pagination toggle and inputuse_pagination = st.sidebar.toggle("Enable Pagination")pagination_details = Noneif use_pagination:pagination_details = st.sidebar.text_input("Enter Pagination Details (optional)",help="Describe how to navigate through pages (e.g., 'Next' button class, URL pattern)")st.sidebar.markdown("---")def generate_unique_folder_name(url):timestamp = datetime.now().strftime('%Y_%m_%d__%H_%M_%S')# Parse the URLparsed_url = urlparse(url)# Extract the domain namedomain = parsed_url.netloc or parsed_url.path.split('/')[0]# Remove 'www.' if presentdomain = re.sub(r'^www\.', '', domain)# Remove any non-alphanumeric characters and replace with underscoresclean_domain = re.sub(r'\W+', '_', domain)return f"{clean_domain}_{timestamp}"def scrape_multiple_urls(urls, fields, selected_model):output_folder = os.path.join('output', generate_unique_folder_name(urls[0]))os.makedirs(output_folder, exist_ok=True)total_input_tokens = 0total_output_tokens = 0total_cost = 0all_data = []first_url_markdown = Nonefor i, url in enumerate(urls, start=1):raw_html = fetch_html_selenium(url)markdown = html_to_markdown_with_readability(raw_html)if i == 1:first_url_markdown = markdowninput_tokens, output_tokens, cost, formatted_data = scrape_url(url, fields, selected_model, output_folder, i, markdown)total_input_tokens += input_tokenstotal_output_tokens += output_tokenstotal_cost += costall_data.append(formatted_data)return output_folder, total_input_tokens, total_output_tokens, total_cost, all_data, first_url_markdown# Define the scraping functiondef perform_scrape():timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')raw_html = fetch_html_selenium(url_input)markdown = html_to_markdown_with_readability(raw_html)save_raw_data(markdown, timestamp)# Detect pagination if enabledpagination_info = Noneif use_pagination:pagination_data, token_counts, pagination_price = detect_pagination_elements(url_input, pagination_details, model_selection, markdown)pagination_info = {"page_urls": pagination_data.page_urls,"token_counts": token_counts,"price": pagination_price}# Initialize token and cost variables with default valuesinput_tokens = 0output_tokens = 0total_cost = 0if show_tags:DynamicListingModel = create_dynamic_listing_model(tags)DynamicListingsContainer = create_listings_container_model(DynamicListingModel)formatted_data, tokens_count = format_data(markdown, DynamicListingsContainer, DynamicListingModel, model_selection)input_tokens, output_tokens, total_cost = calculate_price(tokens_count, model=model_selection)df = save_formatted_data(formatted_data, timestamp)else:formatted_data = Nonedf = Nonereturn df, formatted_data, markdown, input_tokens, output_tokens, total_cost, timestamp, pagination_infoif st.sidebar.button("Scrape"):with st.spinner('Please wait... Data is being scraped.'):urls = url_input.split()field_list = tagsoutput_folder, total_input_tokens, total_output_tokens, total_cost, all_data, first_url_markdown = scrape_multiple_urls(urls, field_list, model_selection)# Perform pagination if enabled and only one URL is providedpagination_info = Noneif use_pagination and len(urls) == 1:try:pagination_result = detect_pagination_elements(urls[0], pagination_details, model_selection, first_url_markdown)if pagination_result is not None:pagination_data, token_counts, pagination_price = pagination_result# Handle both PaginationData objects and dictionariesif isinstance(pagination_data, PaginationData):page_urls = pagination_data.page_urlselif isinstance(pagination_data, dict):page_urls = pagination_data.get("page_urls", [])else:page_urls = []pagination_info = {"page_urls": page_urls,"token_counts": token_counts,"price": pagination_price}else:st.warning("Pagination detection returned None. No pagination information available.")except Exception as e:st.error(f"An error occurred during pagination detection: {e}")pagination_info = {"page_urls": [],"token_counts": {"input_tokens": 0, "output_tokens": 0},"price": 0.0}st.session_state['results'] = (all_data, None, first_url_markdown, total_input_tokens, total_output_tokens, total_cost, output_folder, pagination_info)st.session_state['perform_scrape'] = True# Display results if they exist in session stateif st.session_state['results']:all_data, _, _, input_tokens, output_tokens, total_cost, output_folder, pagination_info = st.session_state['results']# Display scraping details in sidebar only if scraping was performed and the toggle is onif all_data and show_tags:st.sidebar.markdown("---")st.sidebar.markdown("### Scraping Details")st.sidebar.markdown("#### Token Usage")st.sidebar.markdown(f"*Input Tokens:* {input_tokens}")st.sidebar.markdown(f"*Output Tokens:* {output_tokens}")st.sidebar.markdown(f"**Total Cost:** :green-background[**${total_cost:.4f}**]")# Display scraped data in main areast.subheader("Scraped/Parsed Data")for i, data in enumerate(all_data, start=1):st.write(f"Data from URL {i}:")# Handle string data (convert to dict if it's JSON)if isinstance(data, str):try:data = json.loads(data)except json.JSONDecodeError:st.error(f"Failed to parse data as JSON for URL {i}")continueif isinstance(data, dict):if 'listings' in data and isinstance(data['listings'], list):df = pd.DataFrame(data['listings'])else:# If 'listings' is not in the dict or not a list, use the entire dictdf = pd.DataFrame([data])elif hasattr(data, 'listings') and isinstance(data.listings, list):# Handle the case where data is a Pydantic modellistings = [item.dict() for item in data.listings]df = pd.DataFrame(listings)else:st.error(f"Unexpected data format for URL {i}")continue# Display the dataframest.dataframe(df, use_container_width=True)# Download optionsst.subheader("Download Options")col1, col2 = st.columns(2)with col1:json_data = json.dumps(all_data, default=lambda o: o.dict() if hasattr(o, 'dict') else str(o), indent=4)st.download_button("Download JSON",data=json_data,file_name="scraped_data.json")with col2:# Convert all data to a single DataFrameall_listings = []for data in all_data:if isinstance(data, str):try:data = json.loads(data)except json.JSONDecodeError:continueif isinstance(data, dict) and 'listings' in data:all_listings.extend(data['listings'])elif hasattr(data, 'listings'):all_listings.extend([item.dict() for item in data.listings])else:all_listings.append(data)combined_df = pd.DataFrame(all_listings)st.download_button("Download CSV",data=combined_df.to_csv(index=False),file_name="scraped_data.csv")st.success(f"Scraping completed. Results saved in {output_folder}")# Add pagination details to sidebarif pagination_info and use_pagination:st.sidebar.markdown("---")st.sidebar.markdown("### Pagination Details")st.sidebar.markdown(f"**Number of Page URLs:** {len(pagination_info['page_urls'])}")st.sidebar.markdown("#### Pagination Token Usage")st.sidebar.markdown(f"*Input Tokens:* {pagination_info['token_counts']['input_tokens']}")st.sidebar.markdown(f"*Output Tokens:* {pagination_info['token_counts']['output_tokens']}")st.sidebar.markdown(f"**Pagination Cost:** :red-background[**${pagination_info['price']:.4f}**]")st.markdown("---")st.subheader("Pagination Information")pagination_df = pd.DataFrame(pagination_info["page_urls"], columns=["Page URLs"])st.dataframe(pagination_df,column_config={"Page URLs": st.column_config.LinkColumn("Page URLs")},use_container_width=True)# Create columns for download buttonscol1, col2 = st.columns(2)with col1:st.download_button("Download Pagination JSON",data=json.dumps(pagination_info["page_urls"], indent=4),file_name=f"pagination_urls.json")with col2:st.download_button("Download Pagination CSV",data=pagination_df.to_csv(index=False),file_name=f"pagination_urls.csv")# Display combined totals only if both scraping and pagination were performed and both toggles are onif all_data and pagination_info and show_tags and use_pagination:st.markdown("---")total_input_tokens = input_tokens + pagination_info['token_counts']['input_tokens']total_output_tokens = output_tokens + pagination_info['token_counts']['output_tokens']total_combined_cost = total_cost + pagination_info['price']st.markdown("### Total Counts and Cost (Including Pagination)")st.markdown(f"**Total Input Tokens:** {total_input_tokens}")st.markdown(f"**Total Output Tokens:** {total_output_tokens}")st.markdown(f"**Total Combined Cost:** :green[**${total_combined_cost:.4f}**]")# Add a clear results buttonif st.sidebar.button("Clear Results"):st.session_state['results'] = Nonest.session_state['perform_scrape'] = Falsest.rerun()
7️⃣ Create the assets.py
Save the following as assets.py
:
python
"""This module contains configuration variables and constantsthat are used across different parts of the application."""# List of user agents to mimic different usersUSER_AGENTS = ["Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36","Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.114 Safari/537.36","Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:89.0) Gecko/20100101 Firefox/89.0","Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.96 Safari/537.36","Mozilla/5.0 (iPhone; CPU iPhone OS 14_6 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Mobile/15E148 Safari/604.1","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.107 Safari/537.36","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.93 Safari/537.36","Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.1 Safari/605.1.15","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.82 Safari/537.36","Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36","Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:91.0) Gecko/20100101 Firefox/91.0","Mozilla/5.0 (X11; Linux x86_64; rv:90.0) Gecko/20100101 Firefox/90.0","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.150 Safari/537.36","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.66 Safari/537.36","Mozilla/5.0 (Macintosh; Intel Mac OS X 11_0_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.96 Safari/537.36","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.106 Safari/537.36","Mozilla/5.0 (X11; Linux x86_64; rv:89.0) Gecko/20100101 Firefox/89.0","Mozilla/5.0 (iPhone; CPU iPhone OS 13_6 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/13.1.2 Mobile/15E148 Safari/604.1","Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Safari/605.1.15","Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.114 Safari/537.36","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36","Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:88.0) Gecko/20100101 Firefox/88.0","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.212 Safari/537.36","Mozilla/5.0 (Macintosh; Intel Mac OS X 11_0_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Safari/605.1.15","Mozilla/5.0 (iPhone; CPU iPhone OS 13_5_1 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/13.0 Mobile/15E148 Safari/604.1","Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:91.0) Gecko/20100101 Firefox/91.0","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.212 Safari/537.36","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.114 Safari/537.36","Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0.1 Safari/605.1.15","Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:87.0) Gecko/20100101 Firefox/87.0","Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.101 Safari/537.36","Mozilla/5.0 (iPhone; CPU iPhone OS 14_5_1 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Mobile/15E148 Safari/604.1","Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.77 Safari/537.36","Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:89.0) Gecko/20100101 Firefox/89.0","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.77 Safari/537.36","Mozilla/5.0 (iPhone; CPU iPhone OS 14_4 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Mobile/15E148 Safari/604.1","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.85 Safari/537.36","Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.85 Safari/537.36","Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:86.0) Gecko/20100101 Firefox/86.0","Mozilla/5.0 (iPhone; CPU iPhone OS 14_3 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Mobile/15E148 Safari/604.1","Mozilla/5.0 (Macintosh; Intel Mac OS X 11_2_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.114 Safari/537.36","Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:85.0) Gecko/20100101 Firefox/85.0","Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Safari/605.1.15","Mozilla/5.0 (X11; Linux x86_64; rv:85.0) Gecko/20100101 Firefox/85.0","Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.150 Safari/537.36","Mozilla/5.0 (iPhone; CPU iPhone OS 13_7 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/13.0 Mobile/15E148 Safari/604.1","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.82 Safari/537.36","Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Safari/605.1.15","Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.66 Safari/537.36","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.114 Safari/537.36","Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.141 Safari/537.36","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.77 Safari/537.36","Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.77 Safari/537.36"]# Define the pricing for models without Batch APIPRICING = {"gpt-4o-mini": {"input": 0.150 / 1_000_000, # $0.150 per 1M input tokens"output": 0.600 / 1_000_000, # $0.600 per 1M output tokens},"gpt-4o-2024-08-06": {"input": 2.5 / 1_000_000, # $2.5 per 1M input tokens"output": 10 / 1_000_000, # $10 per 1M output tokens},"gemini-1.5-flash": {"input": 0.075 / 1_000_000, # $0.075 per 1M input tokens"output": 0.30 / 1_000_000, # $0.30 per 1M output tokens},"Llama3.1 8B": {"input": 0 , # Free"output": 0 , # Free},"Groq Llama3.1 70b": {"input": 0 , # Free"output": 0 , # Free},# Add other models and their prices here if needed}# Timeout settings for web scrapingTIMEOUT_SETTINGS = {"page_load": 30,"script": 10}# Other reusable constants or configuration settingsHEADLESS_OPTIONS = ["--disable-gpu", "--disable-dev-shm-usage","--window-size=1920,1080","--disable-search-engine-choice-screen"]#in case you don't need to open the website##HEADLESS_OPTIONS=HEADLESS_OPTIONS+[ "--headless=new"]#number of scrollsNUMBER_SCROLL=2LLAMA_MODEL_FULLNAME="lmstudio-community/Meta-Llama-3.1-8B-Instruct-GGUF"GROQ_LLAMA_MODEL_FULLNAME="llama-3.1-70b-versatile"SYSTEM_MESSAGE = """You are an intelligent text extraction and conversion assistant. Your task is to extract structured informationfrom the given text and convert it into a pure JSON format. The JSON should contain only the structured data extracted from the text,with no additional commentary, explanations, or extraneous information.You could encounter cases where you can't find the data of the fields you have to extract or the data will be in a foreign language.Please process the following text and provide the output in pure JSON format with no words before or after the JSON:"""USER_MESSAGE = f"Extract the following information from the provided text:\nPage content:\n\n"PROMPT_PAGINATION = """You are an assistant that extracts pagination elements from markdown content of websites your goal as a universal pagination scrapper of urls from all websites no matter how different they are.Please extract the following:- The url of the 'Next', 'More', 'See more', 'load more' or any other button indicating how to access the next page, if any, it should be 1 url and no more, if there are multiple urls with the same structure leave this empty.- A list of page URLs for pagination it should be a pattern of similar urls with pages that are numbered, if you detect this pattern and the numbers starts from a certain low number until a large number generate the rest of the urls even if they're not included,your goal here is to give as many urls for the user to choose from in order for them to do further scraping, you will have to deal with very different websites that can potientially have so many urls of images and other elements,detect only the urls that are clearly defining a pattern to show data on multiple pages, sometimes there is only a part of these urls and you have to combine it with the initial url, that will be provided for you at the end of this prompt.- The user can give you indications on how the pagination works for the specific website at the end of this prompt, if those indications are not empty pay special attention to them as they will directly help you understand the structure and the number of pages to generate.Provide the output as a JSON object with the following structure:{"page_urls": ["url1", "url2", "url3",...,"urlN"]}Do not include any additional text or explanations."""
8️⃣ Create the pagination_detector.py
Save the following as pagination_detector.py
:
python
# pagination_detector.pyimport osimport jsonfrom typing import List, Dict, Tuple, Unionfrom pydantic import BaseModel, Field, ValidationErrorimport tiktokenfrom dotenv import load_dotenvfrom openai import OpenAIimport google.generativeai as genaifrom groq import Groqfrom assets import PROMPT_PAGINATION, PRICING, LLAMA_MODEL_FULLNAME, GROQ_LLAMA_MODEL_FULLNAMEload_dotenv()import loggingclass PaginationData(BaseModel):page_urls: List[str] = Field(default_factory=list, description="List of pagination URLs, including 'Next' button URL if present")def calculate_pagination_price(token_counts: Dict[str, int], model: str) -> float:"""Calculate the price for pagination based on token counts and the selected model.Args:token_counts (Dict[str, int]): A dictionary containing 'input_tokens' and 'output_tokens'.model (str): The name of the selected model.Returns:float: The total price for the pagination operation."""input_tokens = token_counts['input_tokens']output_tokens = token_counts['output_tokens']input_price = input_tokens * PRICING[model]['input']output_price = output_tokens * PRICING[model]['output']return input_price + output_pricedef detect_pagination_elements(url: str, indications: str, selected_model: str, markdown_content: str) -> Tuple[Union[PaginationData, Dict, str], Dict, float]:try:"""Uses AI models to analyze markdown content and extract pagination elements.Args:selected_model (str): The name of the OpenAI model to use.markdown_content (str): The markdown content to analyze.Returns:Tuple[PaginationData, Dict, float]: Parsed pagination data, token counts, and pagination price."""prompt_pagination = PROMPT_PAGINATION+"\n The url of the page to extract pagination from "+url+"if the urls that you find are not complete combine them intelligently in a way that fit the pattern **ALWAYS GIVE A FULL URL**"if indications != "":prompt_pagination +=PROMPT_PAGINATION+"\n\n these are the users indications that, pay special attention to them: "+indications+"\n\n below are the markdowns of the website: \n\n"else:prompt_pagination +=PROMPT_PAGINATION+"\n There are no user indications in this case just apply the logic described. \n\n below are the markdowns of the website: \n\n"if selected_model in ["gpt-4o-mini", "gpt-4o-2024-08-06"]:# Use OpenAI APIclient = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))completion = client.beta.chat.completions.parse(model=selected_model,messages=[{"role": "system", "content": prompt_pagination},{"role": "user", "content": markdown_content},],response_format=PaginationData)# Extract the parsed responseparsed_response = completion.choices[0].message.parsed# Calculate tokens using tiktokenencoder = tiktoken.encoding_for_model(selected_model)input_token_count = len(encoder.encode(markdown_content))output_token_count = len(encoder.encode(json.dumps(parsed_response.dict())))token_counts = {"input_tokens": input_token_count,"output_tokens": output_token_count}# Calculate the pricepagination_price = calculate_pagination_price(token_counts, selected_model)return parsed_response, token_counts, pagination_priceelif selected_model == "gemini-1.5-flash":# Use Google Gemini APIgenai.configure(api_key=os.getenv("GOOGLE_API_KEY"))model = genai.GenerativeModel('gemini-1.5-flash',generation_config={"response_mime_type": "application/json","response_schema": PaginationData})prompt = f"{prompt_pagination}\n{markdown_content}"# Count input tokens using Gemini's methodinput_tokens = model.count_tokens(prompt)completion = model.generate_content(prompt)# Extract token counts from usage_metadatausage_metadata = completion.usage_metadatatoken_counts = {"input_tokens": usage_metadata.prompt_token_count,"output_tokens": usage_metadata.candidates_token_count}# Get the resultresponse_content = completion.text# Log the response content and its typelogging.info(f"Gemini Flash response type: {type(response_content)}")logging.info(f"Gemini Flash response content: {response_content}")# Try to parse the response as JSONtry:parsed_data = json.loads(response_content)if isinstance(parsed_data, dict) and 'page_urls' in parsed_data:pagination_data = PaginationData(**parsed_data)else:pagination_data = PaginationData(page_urls=[])except json.JSONDecodeError:logging.error("Failed to parse Gemini Flash response as JSON")pagination_data = PaginationData(page_urls=[])# Calculate the pricepagination_price = calculate_pagination_price(token_counts, selected_model)return pagination_data, token_counts, pagination_priceelif selected_model == "Llama3.1 8B":import openai# Use Llama model via OpenAI API pointing to local serveropenai.api_key = "lm-studio"openai.api_base = "http://localhost:1234/v1"response = openai.ChatCompletion.create(model=LLAMA_MODEL_FULLNAME,messages=[{"role": "system", "content": prompt_pagination},{"role": "user", "content": markdown_content},],temperature=0.7,)response_content = response['choices'][0]['message']['content'].strip()# Try to parse the JSONtry:pagination_data = json.loads(response_content)except json.JSONDecodeError:pagination_data = {"next_buttons": [], "page_urls": []}# Token countstoken_counts = {"input_tokens": response['usage']['prompt_tokens'],"output_tokens": response['usage']['completion_tokens']}# Calculate the pricepagination_price = calculate_pagination_price(token_counts, selected_model)return pagination_data, token_counts, pagination_priceelif selected_model == "Groq Llama3.1 70b":# Use Groq clientclient = Groq(api_key=os.environ.get("GROQ_API_KEY"))response = client.chat.completions.create(model=GROQ_LLAMA_MODEL_FULLNAME,messages=[{"role": "system", "content": prompt_pagination},{"role": "user", "content": markdown_content},],)response_content = response.choices[0].message.content.strip()# Try to parse the JSONtry:pagination_data = json.loads(response_content)except json.JSONDecodeError:pagination_data = {"page_urls": []}# Token countstoken_counts = {"input_tokens": response.usage.prompt_tokens,"output_tokens": response.usage.completion_tokens}# Calculate the pricepagination_price = calculate_pagination_price(token_counts, selected_model)# Ensure the pagination_data is a dictionaryif isinstance(pagination_data, PaginationData):pagination_data = pagination_data.dict()elif not isinstance(pagination_data, dict):pagination_data = {"page_urls": []}return pagination_data, token_counts, pagination_priceelse:raise ValueError(f"Unsupported model: {selected_model}")except Exception as e:logging.error(f"An error occurred in detect_pagination_elements: {e}")# Return default values if an error occursreturn PaginationData(page_urls=[]), {"input_tokens": 0, "output_tokens": 0}, 0.0
9️⃣ Run the Streamlit App
Run the following command:
bash
streamlit run streamlit_app.py