ScrapeMaster 4.0 - Installation Guide
Discover the project in action
Watch Video1️⃣ Create a Virtual Environment
Run the following command to create and activate a virtual environment:
bash
python -m venv venv
2️⃣ Install Dependencies
Create a requirements.txt
file and copy the following dependencies:
plaintext
openaipython-dotenvpandaspydanticrequestsbeautifulsoup4html2texttiktokenseleniumreadability-lxmlstreamlitstreamlit-tagsopenpyxl
Then install all dependencies with:
bash
pip install -r requirements.txt
3️⃣ Add Your API Key
Create a .env
file and add your OpenAI API key:
plaintext
OPENAI_API_KEY=sk-xxxxxxxx(place your own key)GOOGLE_API_KEY=AIzaSyxxxxxxxGROQ_API_KEY=gskxxxxxxxxx
4️⃣ Download ChromeDriver
Download ChromeDriver from the official website:Chrome for Testing availability
5️⃣ Create the Scraper Script
Save the following script as scraper.py
:
python
import osimport randomimport timeimport reimport jsonfrom datetime import datetimefrom typing import List, Dict, Typeimport pandas as pdfrom bs4 import BeautifulSoupfrom pydantic import BaseModel, Field, create_modelimport html2textimport tiktokenimport streamlit as stfrom dotenv import load_dotenvfrom selenium import webdriverfrom selenium.webdriver.chrome.service import Servicefrom selenium.webdriver.chrome.options import Optionsfrom selenium.webdriver.common.by import Byfrom selenium.webdriver.common.action_chains import ActionChainsfrom selenium.webdriver.support.ui import WebDriverWaitfrom selenium.webdriver.support import expected_conditions as ECfrom webdriver_manager.chrome import ChromeDriverManagerfrom openai import OpenAIimport google.generativeai as genaifrom groq import Groqfrom api_management import get_api_keyfrom assets import USER_AGENTS,PRICING,HEADLESS_OPTIONS,SYSTEM_MESSAGE,USER_MESSAGE,LLAMA_MODEL_FULLNAME,GROQ_LLAMA_MODEL_FULLNAME,HEADLESS_OPTIONS_DOCKERload_dotenv()# Set up the Chrome WebDriver optionsdef is_running_in_docker():"""Detect if the app is running inside a Docker container.This checks if the '/proc/1/cgroup' file contains 'docker'."""try:with open("/proc/1/cgroup", "rt") as file:return "docker" in file.read()except Exception:return Falsedef setup_selenium(attended_mode=False):options = Options()service = Service(ChromeDriverManager().install())# Apply headless options based on whether the code is running in Dockerif is_running_in_docker():# Running inside Docker, use Docker-specific headless optionsfor option in HEADLESS_OPTIONS_DOCKER:options.add_argument(option)else:# Not running inside Docker, use the normal headless optionsfor option in HEADLESS_OPTIONS:options.add_argument(option)# Initialize the WebDriverdriver = webdriver.Chrome(service=service, options=options)return driverdef fetch_html_selenium(url, attended_mode=False, driver=None):if driver is None:driver = setup_selenium(attended_mode)should_quit = Trueif not attended_mode:driver.get(url)else:should_quit = False# Do not navigate to the URL if in attended mode and driver is already initializedif not attended_mode:driver.get(url)try:if not attended_mode:# Add more realistic actions like scrollingdriver.execute_script("window.scrollTo(0, document.body.scrollHeight/2);")time.sleep(random.uniform(1.1, 1.8))driver.execute_script("window.scrollTo(0, document.body.scrollHeight/1.2);")time.sleep(random.uniform(1.1, 1.8))driver.execute_script("window.scrollTo(0, document.body.scrollHeight/1);")time.sleep(random.uniform(1.1, 1.8))# Get the page source from the current pagehtml = driver.page_sourcereturn htmlfinally:if should_quit:driver.quit()def clean_html(html_content):soup = BeautifulSoup(html_content, 'html.parser')# Remove headers and footers based on common HTML tags or classesfor element in soup.find_all(['header', 'footer']):element.decompose() # Remove these tags and their contentreturn str(soup)def html_to_markdown_with_readability(html_content):cleaned_html = clean_html(html_content)# Convert to markdownmarkdown_converter = html2text.HTML2Text()markdown_converter.ignore_links = Falsemarkdown_content = markdown_converter.handle(cleaned_html)return markdown_contentdef save_raw_data(raw_data: str, output_folder: str, file_name: str):"""Save raw markdown data to the specified output folder."""os.makedirs(output_folder, exist_ok=True)raw_output_path = os.path.join(output_folder, file_name)with open(raw_output_path, 'w', encoding='utf-8') as f:f.write(raw_data)print(f"Raw data saved to {raw_output_path}")return raw_output_pathdef create_dynamic_listing_model(field_names: List[str]) -> Type[BaseModel]:"""Dynamically creates a Pydantic model based on provided fields.field_name is a list of names of the fields to extract from the markdown."""# Create field definitions using aliases for Field parametersfield_definitions = {field: (str, ...) for field in field_names}# Dynamically create the model with all fieldreturn create_model('DynamicListingModel', **field_definitions)def create_listings_container_model(listing_model: Type[BaseModel]) -> Type[BaseModel]:"""Create a container model that holds a list of the given listing model."""return create_model('DynamicListingsContainer', listings=(List[listing_model], ...))def trim_to_token_limit(text, model, max_tokens=120000):encoder = tiktoken.encoding_for_model(model)tokens = encoder.encode(text)if len(tokens) > max_tokens:trimmed_text = encoder.decode(tokens[:max_tokens])return trimmed_textreturn textdef generate_system_message(listing_model: BaseModel) -> str:"""Dynamically generate a system message based on the fields in the provided listing model."""# Use the model_json_schema() method to introspect the Pydantic modelschema_info = listing_model.model_json_schema()# Extract field descriptions from the schemafield_descriptions = []for field_name, field_info in schema_info["properties"].items():# Get the field type from the schema infofield_type = field_info["type"]field_descriptions.append(f'"{field_name}": "{field_type}"')# Create the JSON schema structure for the listingsschema_structure = ",\n".join(field_descriptions)# Generate the system message dynamicallysystem_message = f"""You are an intelligent text extraction and conversion assistant. Your task is to extract structured informationfrom the given text and convert it into a pure JSON format. The JSON should contain only the structured data extracted from the text,with no additional commentary, explanations, or extraneous information.You could encounter cases where you can't find the data of the fields you have to extract or the data will be in a foreign language.Please process the following text and provide the output in pure JSON format with no words before or after the JSON:Please ensure the output strictly follows this schema:{{"listings": [{{{schema_structure}}}]}} """return system_messagedef format_data(data, DynamicListingsContainer, DynamicListingModel, selected_model):token_counts = {}if selected_model in ["gpt-4o-mini", "gpt-4o-2024-08-06"]:# Use OpenAI APIclient = OpenAI(api_key=get_api_key('OPENAI_API_KEY'))completion = client.beta.chat.completions.parse(model=selected_model,messages=[{"role": "system", "content": SYSTEM_MESSAGE},{"role": "user", "content": USER_MESSAGE + data},],response_format=DynamicListingsContainer)# Calculate tokens using tiktokenencoder = tiktoken.encoding_for_model(selected_model)input_token_count = len(encoder.encode(USER_MESSAGE + data))output_token_count = len(encoder.encode(json.dumps(completion.choices[0].message.parsed.dict())))token_counts = {"input_tokens": input_token_count,"output_tokens": output_token_count}return completion.choices[0].message.parsed, token_countselif selected_model == "gemini-1.5-flash":# Use Google Gemini APIgenai.configure(api_key=get_api_key("GOOGLE_API_KEY"))model = genai.GenerativeModel('gemini-1.5-flash',generation_config={"response_mime_type": "application/json","response_schema": DynamicListingsContainer})prompt = SYSTEM_MESSAGE + "\n" + USER_MESSAGE + data# Count input tokens using Gemini's methodinput_tokens = model.count_tokens(prompt)completion = model.generate_content(prompt)# Extract token counts from usage_metadatausage_metadata = completion.usage_metadatatoken_counts = {"input_tokens": usage_metadata.prompt_token_count,"output_tokens": usage_metadata.candidates_token_count}return completion.text, token_countselif selected_model == "Llama3.1 8B":# Dynamically generate the system message based on the schemasys_message = generate_system_message(DynamicListingModel)# print(SYSTEM_MESSAGE)# Point to the local serverclient = OpenAI(base_url="http://localhost:1234/v1", api_key="lm-studio")completion = client.chat.completions.create(model=LLAMA_MODEL_FULLNAME, #change this if needed (use a better model)messages=[{"role": "system", "content": sys_message},{"role": "user", "content": USER_MESSAGE + data}],temperature=0.7,)# Extract the content from the responseresponse_content = completion.choices[0].message.contentprint(response_content)# Convert the content from JSON string to a Python dictionaryparsed_response = json.loads(response_content)# Extract token usagetoken_counts = {"input_tokens": completion.usage.prompt_tokens,"output_tokens": completion.usage.completion_tokens}return parsed_response, token_countselif selected_model== "Groq Llama3.1 70b":# Dynamically generate the system message based on the schemasys_message = generate_system_message(DynamicListingModel)# print(SYSTEM_MESSAGE)# Point to the local serverclient = Groq(api_key=get_api_key("GROQ_API_KEY"),)completion = client.chat.completions.create(messages=[{"role": "system","content": sys_message},{"role": "user","content": USER_MESSAGE + data}],model=GROQ_LLAMA_MODEL_FULLNAME,)# Extract the content from the responseresponse_content = completion.choices[0].message.content# Convert the content from JSON string to a Python dictionaryparsed_response = json.loads(response_content)# completion.usagetoken_counts = {"input_tokens": completion.usage.prompt_tokens,"output_tokens": completion.usage.completion_tokens}return parsed_response, token_countselse:raise ValueError(f"Unsupported model: {selected_model}")def save_formatted_data(formatted_data, output_folder: str, json_file_name: str, excel_file_name: str):"""Save formatted data as JSON and Excel in the specified output folder."""os.makedirs(output_folder, exist_ok=True)# Parse the formatted data if it's a JSON string (from Gemini API)if isinstance(formatted_data, str):try:formatted_data_dict = json.loads(formatted_data)except json.JSONDecodeError:raise ValueError("The provided formatted data is a string but not valid JSON.")else:# Handle data from OpenAI or other sourcesformatted_data_dict = formatted_data.dict() if hasattr(formatted_data, 'dict') else formatted_data# Save the formatted data as JSONjson_output_path = os.path.join(output_folder, json_file_name)with open(json_output_path, 'w', encoding='utf-8') as f:json.dump(formatted_data_dict, f, indent=4)print(f"Formatted data saved to JSON at {json_output_path}")# Prepare data for DataFrameif isinstance(formatted_data_dict, dict):# If the data is a dictionary containing lists, assume these lists are recordsdata_for_df = next(iter(formatted_data_dict.values())) if len(formatted_data_dict) == 1 else formatted_data_dictelif isinstance(formatted_data_dict, list):data_for_df = formatted_data_dictelse:raise ValueError("Formatted data is neither a dictionary nor a list, cannot convert to DataFrame")# Create DataFrametry:df = pd.DataFrame(data_for_df)print("DataFrame created successfully.")# Save the DataFrame to an Excel fileexcel_output_path = os.path.join(output_folder, excel_file_name)df.to_excel(excel_output_path, index=False)print(f"Formatted data saved to Excel at {excel_output_path}")return dfexcept Exception as e:print(f"Error creating DataFrame or saving Excel: {str(e)}")return Nonedef calculate_price(token_counts, model):input_token_count = token_counts.get("input_tokens", 0)output_token_count = token_counts.get("output_tokens", 0)# Calculate the costsinput_cost = input_token_count * PRICING[model]["input"]output_cost = output_token_count * PRICING[model]["output"]total_cost = input_cost + output_costreturn input_token_count, output_token_count, total_costdef generate_unique_folder_name(url):timestamp = datetime.now().strftime('%Y_%m_%d__%H_%M_%S')url_name = re.sub(r'\W+', '_', url.split('//')[1].split('/')[0]) # Extract domain name and replace non-alphanumeric charactersreturn f"{url_name}_{timestamp}"def scrape_url(url: str, fields: List[str], selected_model: str, output_folder: str, file_number: int, markdown: str):"""Scrape a single URL and save the results."""try:# Save raw datasave_raw_data(markdown, output_folder, f'rawData_{file_number}.md')# Create the dynamic listing modelDynamicListingModel = create_dynamic_listing_model(fields)# Create the container model that holds a list of the dynamic listing modelsDynamicListingsContainer = create_listings_container_model(DynamicListingModel)# Format dataformatted_data, token_counts = format_data(markdown, DynamicListingsContainer, DynamicListingModel, selected_model)# Save formatted datasave_formatted_data(formatted_data, output_folder, f'sorted_data_{file_number}.json', f'sorted_data_{file_number}.xlsx')# Calculate and return token usage and costinput_tokens, output_tokens, total_cost = calculate_price(token_counts, selected_model)return input_tokens, output_tokens, total_cost, formatted_dataexcept Exception as e:print(f"An error occurred while processing {url}: {e}")return 0, 0, 0, None# Remove the main execution block if it's not needed for testing purposes
6️⃣ Create the Streamlit App
Save the following as streamlit_app.py
:
python
# streamlit_app.pyimport streamlit as stfrom streamlit_tags import st_tags_sidebarimport pandas as pdimport jsonfrom datetime import datetimefrom scraper import (fetch_html_selenium,save_raw_data,format_data,save_formatted_data,calculate_price,html_to_markdown_with_readability,create_dynamic_listing_model,create_listings_container_model,scrape_url,setup_selenium,generate_unique_folder_name)from pagination_detector import detect_pagination_elementsimport refrom urllib.parse import urlparsefrom assets import PRICINGimport os# Initialize Streamlit appst.set_page_config(page_title="Universal Web Scraper", page_icon="🦑")st.title("Universal Web Scraper 🦑")# Initialize session state variablesif 'scraping_state' not in st.session_state:st.session_state['scraping_state'] = 'idle' # Possible states: 'idle', 'waiting', 'scraping', 'completed'if 'results' not in st.session_state:st.session_state['results'] = Noneif 'driver' not in st.session_state:st.session_state['driver'] = None# Sidebar componentsst.sidebar.title("Web Scraper Settings")# API Keyswith st.sidebar.expander("API Keys", expanded=False):st.session_state['openai_api_key'] = st.text_input("OpenAI API Key", type="password")st.session_state['gemini_api_key'] = st.text_input("Gemini API Key", type="password")st.session_state['groq_api_key'] = st.text_input("Groq API Key", type="password")# Model selectionmodel_selection = st.sidebar.selectbox("Select Model", options=list(PRICING.keys()), index=0)# URL inputurl_input = st.sidebar.text_input("Enter URL(s) separated by whitespace")# Process URLsurls = url_input.strip().split()num_urls = len(urls)# Fields to extractshow_tags = st.sidebar.toggle("Enable Scraping")fields = []if show_tags:fields = st_tags_sidebar(label='Enter Fields to Extract:',text='Press enter to add a field',value=[],suggestions=[],maxtags=-1,key='fields_input')st.sidebar.markdown("---")# Conditionally display Pagination and Attended Mode optionsif num_urls <= 1:# Pagination settingsuse_pagination = st.sidebar.toggle("Enable Pagination")pagination_details = ""if use_pagination:pagination_details = st.sidebar.text_input("Enter Pagination Details (optional)",help="Describe how to navigate through pages (e.g., 'Next' button class, URL pattern)")st.sidebar.markdown("---")# Attended mode toggleattended_mode = st.sidebar.toggle("Enable Attended Mode")else:# Multiple URLs entered; disable Pagination and Attended Modeuse_pagination = Falseattended_mode = False# Inform the userst.sidebar.info("Pagination and Attended Mode are disabled when multiple URLs are entered.")st.sidebar.markdown("---")# Main action buttonif st.sidebar.button("LAUNCH SCRAPER", type="primary"):if url_input.strip() == "":st.error("Please enter at least one URL.")elif show_tags and len(fields) == 0:st.error("Please enter at least one field to extract.")else:# Set up scraping parameters in session statest.session_state['urls'] = url_input.strip().split()st.session_state['fields'] = fieldsst.session_state['model_selection'] = model_selectionst.session_state['attended_mode'] = attended_modest.session_state['use_pagination'] = use_paginationst.session_state['pagination_details'] = pagination_detailsst.session_state['scraping_state'] = 'waiting' if attended_mode else 'scraping'# Scraping logicif st.session_state['scraping_state'] == 'waiting':# Attended mode: set up driver and wait for user interactionif st.session_state['driver'] is None:st.session_state['driver'] = setup_selenium(attended_mode=True)st.session_state['driver'].get(st.session_state['urls'][0])st.write("Perform any required actions in the browser window that opened.")st.write("Navigate to the page you want to scrape.")st.write("When ready, click the 'Resume Scraping' button.")else:st.write("Browser window is already open. Perform your actions and click 'Resume Scraping'.")if st.button("Resume Scraping"):st.session_state['scraping_state'] = 'scraping'st.rerun()elif st.session_state['scraping_state'] == 'scraping':with st.spinner('Scraping in progress...'):# Perform scrapingoutput_folder = os.path.join('output', generate_unique_folder_name(st.session_state['urls'][0]))os.makedirs(output_folder, exist_ok=True)total_input_tokens = 0total_output_tokens = 0total_cost = 0all_data = []pagination_info = Nonedriver = st.session_state.get('driver', None)if st.session_state['attended_mode'] and driver is not None:# Attended mode: scrape the current page without navigating# Fetch HTML from the current pageraw_html = fetch_html_selenium(st.session_state['urls'][0], attended_mode=True, driver=driver)markdown = html_to_markdown_with_readability(raw_html)save_raw_data(markdown, output_folder, f'rawData_1.md')current_url = driver.current_url # Use the current URL for logging and saving purposes# Detect pagination if enabledif st.session_state['use_pagination']:pagination_data, token_counts, pagination_price = detect_pagination_elements(current_url, st.session_state['pagination_details'], st.session_state['model_selection'], markdown)# Check if pagination_data is a dict or a model with 'page_urls' attributeif isinstance(pagination_data, dict):page_urls = pagination_data.get("page_urls", [])else:page_urls = pagination_data.page_urlspagination_info = {"page_urls": page_urls,"token_counts": token_counts,"price": pagination_price}# Scrape data if fields are specifiedif show_tags:# Create dynamic modelsDynamicListingModel = create_dynamic_listing_model(st.session_state['fields'])DynamicListingsContainer = create_listings_container_model(DynamicListingModel)# Format dataformatted_data, token_counts = format_data(markdown, DynamicListingsContainer, DynamicListingModel, st.session_state['model_selection'])input_tokens, output_tokens, cost = calculate_price(token_counts, st.session_state['model_selection'])total_input_tokens += input_tokenstotal_output_tokens += output_tokenstotal_cost += cost# Save formatted datadf = save_formatted_data(formatted_data, output_folder, f'sorted_data_1.json', f'sorted_data_1.xlsx')all_data.append(formatted_data)else:# Non-attended mode or driver not availablefor i, url in enumerate(st.session_state['urls'], start=1):# Fetch HTMLraw_html = fetch_html_selenium(url, attended_mode=False)markdown = html_to_markdown_with_readability(raw_html)save_raw_data(markdown, output_folder, f'rawData_{i}.md')# Detect pagination if enabled and only for the first URLif st.session_state['use_pagination'] and i == 1:pagination_data, token_counts, pagination_price = detect_pagination_elements(url, st.session_state['pagination_details'], st.session_state['model_selection'], markdown)# Check if pagination_data is a dict or a model with 'page_urls' attributeif isinstance(pagination_data, dict):page_urls = pagination_data.get("page_urls", [])else:page_urls = pagination_data.page_urlspagination_info = {"page_urls": page_urls,"token_counts": token_counts,"price": pagination_price}# Scrape data if fields are specifiedif show_tags:# Create dynamic modelsDynamicListingModel = create_dynamic_listing_model(st.session_state['fields'])DynamicListingsContainer = create_listings_container_model(DynamicListingModel)# Format dataformatted_data, token_counts = format_data(markdown, DynamicListingsContainer, DynamicListingModel, st.session_state['model_selection'])input_tokens, output_tokens, cost = calculate_price(token_counts, st.session_state['model_selection'])total_input_tokens += input_tokenstotal_output_tokens += output_tokenstotal_cost += cost# Save formatted datadf = save_formatted_data(formatted_data, output_folder, f'sorted_data_{i}.json', f'sorted_data_{i}.xlsx')all_data.append(formatted_data)# Clean up driver if usedif driver:driver.quit()st.session_state['driver'] = None# Save resultsst.session_state['results'] = {'data': all_data,'input_tokens': total_input_tokens,'output_tokens': total_output_tokens,'total_cost': total_cost,'output_folder': output_folder,'pagination_info': pagination_info}st.session_state['scraping_state'] = 'completed'# Display resultsif st.session_state['scraping_state'] == 'completed' and st.session_state['results']:results = st.session_state['results']all_data = results['data']total_input_tokens = results['input_tokens']total_output_tokens = results['output_tokens']total_cost = results['total_cost']output_folder = results['output_folder']pagination_info = results['pagination_info']# Display scraping detailsif show_tags:st.subheader("Scraping Results")for i, data in enumerate(all_data, start=1):st.write(f"Data from URL {i}:")# Handle string data (convert to dict if it's JSON)if isinstance(data, str):try:data = json.loads(data)except json.JSONDecodeError:st.error(f"Failed to parse data as JSON for URL {i}")continueif isinstance(data, dict):if 'listings' in data and isinstance(data['listings'], list):df = pd.DataFrame(data['listings'])else:# If 'listings' is not in the dict or not a list, use the entire dictdf = pd.DataFrame([data])elif hasattr(data, 'listings') and isinstance(data.listings, list):# Handle the case where data is a Pydantic modellistings = [item.dict() for item in data.listings]df = pd.DataFrame(listings)else:st.error(f"Unexpected data format for URL {i}")continue# Display the dataframest.dataframe(df, use_container_width=True)# Display token usage and costst.sidebar.markdown("---")st.sidebar.markdown("### Scraping Details")st.sidebar.markdown("#### Token Usage")st.sidebar.markdown(f"*Input Tokens:* {total_input_tokens}")st.sidebar.markdown(f"*Output Tokens:* {total_output_tokens}")st.sidebar.markdown(f"**Total Cost:** :green-background[**${total_cost:.4f}**]")# Download optionsst.subheader("Download Extracted Data")col1, col2 = st.columns(2)with col1:json_data = json.dumps(all_data, default=lambda o: o.dict() if hasattr(o, 'dict') else str(o), indent=4)st.download_button("Download JSON",data=json_data,file_name="scraped_data.json")with col2:# Convert all data to a single DataFrameall_listings = []for data in all_data:if isinstance(data, str):try:data = json.loads(data)except json.JSONDecodeError:continueif isinstance(data, dict) and 'listings' in data:all_listings.extend(data['listings'])elif hasattr(data, 'listings'):all_listings.extend([item.dict() for item in data.listings])else:all_listings.append(data)combined_df = pd.DataFrame(all_listings)st.download_button("Download CSV",data=combined_df.to_csv(index=False),file_name="scraped_data.csv")st.success(f"Scraping completed. Results saved in {output_folder}")# Display pagination infoif pagination_info:st.markdown("---")st.subheader("Pagination Information")# Display token usage and cost using metricsst.sidebar.markdown("---")st.sidebar.markdown("### Pagination Details")st.sidebar.markdown(f"**Number of Page URLs:** {len(pagination_info['page_urls'])}")st.sidebar.markdown("#### Pagination Token Usage")st.sidebar.markdown(f"*Input Tokens:* {pagination_info['token_counts']['input_tokens']}")st.sidebar.markdown(f"*Output Tokens:* {pagination_info['token_counts']['output_tokens']}")st.sidebar.markdown(f"**Pagination Cost:** :blue-background[**${pagination_info['price']:.4f}**]")# Display page URLs in a tablest.write("**Page URLs:**")# Make URLs clickablepagination_df = pd.DataFrame(pagination_info["page_urls"], columns=["Page URLs"])st.dataframe(pagination_df,column_config={"Page URLs": st.column_config.LinkColumn("Page URLs")},use_container_width=True)# Download pagination URLsst.subheader("Download Pagination URLs")col1, col2 = st.columns(2)with col1:st.download_button("Download Pagination CSV",data=pagination_df.to_csv(index=False),file_name="pagination_urls.csv")with col2:st.download_button("Download Pagination JSON",data=json.dumps(pagination_info['page_urls'], indent=4),file_name="pagination_urls.json")# Reset scraping stateif st.sidebar.button("Clear Results"):st.session_state['scraping_state'] = 'idle'st.session_state['results'] = None# If both scraping and pagination were performed, show totals under the pagination tableif show_tags and pagination_info:st.markdown("---")total_input_tokens_combined = total_input_tokens + pagination_info['token_counts']['input_tokens']total_output_tokens_combined = total_output_tokens + pagination_info['token_counts']['output_tokens']total_combined_cost = total_cost + pagination_info['price']st.markdown("### Total Counts and Cost (Including Pagination)")st.markdown(f"**Total Input Tokens:** {total_input_tokens_combined}")st.markdown(f"**Total Output Tokens:** {total_output_tokens_combined}")st.markdown(f"**Total Combined Cost:** :rainbow-background[**${total_combined_cost:.4f}**]")# Helper function to generate unique folder namesdef generate_unique_folder_name(url):timestamp = datetime.now().strftime('%Y_%m_%d__%H_%M_%S')# Parse the URLparsed_url = urlparse(url)# Extract the domain namedomain = parsed_url.netloc or parsed_url.path.split('/')[0]# Remove 'www.' if presentdomain = re.sub(r'^www\.', '', domain)# Remove any non-alphanumeric characters and replace with underscoresclean_domain = re.sub(r'\W+', '_', domain)return f"{clean_domain}_{timestamp}"
7️⃣ Create the assets.py
Save the following as assets.py
:
python
"""This module contains configuration variables and constantsthat are used across different parts of the application."""# List of user agents to mimic different usersUSER_AGENTS = ["Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36","Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.114 Safari/537.36","Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:89.0) Gecko/20100101 Firefox/89.0","Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.96 Safari/537.36","Mozilla/5.0 (iPhone; CPU iPhone OS 14_6 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Mobile/15E148 Safari/604.1","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.107 Safari/537.36","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.93 Safari/537.36","Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.1 Safari/605.1.15","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.82 Safari/537.36","Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36","Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:91.0) Gecko/20100101 Firefox/91.0","Mozilla/5.0 (X11; Linux x86_64; rv:90.0) Gecko/20100101 Firefox/90.0","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.150 Safari/537.36","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.66 Safari/537.36","Mozilla/5.0 (Macintosh; Intel Mac OS X 11_0_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.96 Safari/537.36","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.106 Safari/537.36","Mozilla/5.0 (X11; Linux x86_64; rv:89.0) Gecko/20100101 Firefox/89.0","Mozilla/5.0 (iPhone; CPU iPhone OS 13_6 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/13.1.2 Mobile/15E148 Safari/604.1","Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Safari/605.1.15","Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.114 Safari/537.36","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36","Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:88.0) Gecko/20100101 Firefox/88.0","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.212 Safari/537.36","Mozilla/5.0 (Macintosh; Intel Mac OS X 11_0_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Safari/605.1.15","Mozilla/5.0 (iPhone; CPU iPhone OS 13_5_1 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/13.0 Mobile/15E148 Safari/604.1","Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:91.0) Gecko/20100101 Firefox/91.0","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.212 Safari/537.36","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.114 Safari/537.36","Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0.1 Safari/605.1.15","Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:87.0) Gecko/20100101 Firefox/87.0","Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.101 Safari/537.36","Mozilla/5.0 (iPhone; CPU iPhone OS 14_5_1 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Mobile/15E148 Safari/604.1","Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.77 Safari/537.36","Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:89.0) Gecko/20100101 Firefox/89.0","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.77 Safari/537.36","Mozilla/5.0 (iPhone; CPU iPhone OS 14_4 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Mobile/15E148 Safari/604.1","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.85 Safari/537.36","Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.85 Safari/537.36","Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:86.0) Gecko/20100101 Firefox/86.0","Mozilla/5.0 (iPhone; CPU iPhone OS 14_3 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Mobile/15E148 Safari/604.1","Mozilla/5.0 (Macintosh; Intel Mac OS X 11_2_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.114 Safari/537.36","Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:85.0) Gecko/20100101 Firefox/85.0","Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Safari/605.1.15","Mozilla/5.0 (X11; Linux x86_64; rv:85.0) Gecko/20100101 Firefox/85.0","Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.150 Safari/537.36","Mozilla/5.0 (iPhone; CPU iPhone OS 13_7 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/13.0 Mobile/15E148 Safari/604.1","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.82 Safari/537.36","Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Safari/605.1.15","Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.66 Safari/537.36","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.114 Safari/537.36","Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.141 Safari/537.36","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.77 Safari/537.36","Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.77 Safari/537.36"]# Define the pricing for models without Batch APIPRICING = {"gpt-4o-mini": {"input": 0.150 / 1_000_000, # $0.150 per 1M input tokens"output": 0.600 / 1_000_000, # $0.600 per 1M output tokens},"gpt-4o-2024-08-06": {"input": 2.5 / 1_000_000, # $2.5 per 1M input tokens"output": 10 / 1_000_000, # $10 per 1M output tokens},"gemini-1.5-flash": {"input": 0.075 / 1_000_000, # $0.075 per 1M input tokens"output": 0.30 / 1_000_000, # $0.30 per 1M output tokens},"Llama3.1 8B": {"input": 0 , # Free"output": 0 , # Free},"Groq Llama3.1 70b": {"input": 0 , # Free"output": 0 , # Free},# Add other models and their prices here if needed}# Timeout settings for web scrapingTIMEOUT_SETTINGS = {"page_load": 30,"script": 10}# Other reusable constants or configuration settingsHEADLESS_OPTIONS = ["--disable-gpu", "--disable-dev-shm-usage","--window-size=1920,1080","--disable-search-engine-choice-screen","--disable-blink-features=AutomationControlled"]HEADLESS_OPTIONS_DOCKER = ["--headless=new","--no-sandbox","--disable-gpu", "--disable-dev-shm-usage","--disable-software-rasterizer","--disable-setuid-sandbox","--remote-debugging-port=9222","--disable-search-engine-choice-screen"]#in case you don't need to open the website##HEADLESS_OPTIONS=HEADLESS_OPTIONS+[ "--headless=new"]#number of scrollsNUMBER_SCROLL=2LLAMA_MODEL_FULLNAME="lmstudio-community/Meta-Llama-3.1-8B-Instruct-GGUF"GROQ_LLAMA_MODEL_FULLNAME="llama-3.1-70b-versatile"SYSTEM_MESSAGE = """You are an intelligent text extraction and conversion assistant. Your task is to extract structured informationfrom the given text and convert it into a pure JSON format. The JSON should contain only the structured data extracted from the text,with no additional commentary, explanations, or extraneous information.You could encounter cases where you can't find the data of the fields you have to extract or the data will be in a foreign language.Please process the following text and provide the output in pure JSON format with no words before or after the JSON:"""USER_MESSAGE = f"Extract the following information from the provided text:\nPage content:\n\n"PROMPT_PAGINATION = """You are an assistant that extracts pagination elements from markdown content of websites your goal as a universal pagination scrapper of urls from all websites no matter how different they are.Please extract the following:- The url of the 'Next', 'More', 'See more', 'load more' or any other button indicating how to access the next page, if any, it should be 1 url and no more, if there are multiple urls with the same structure leave this empty.- A list of page URLs for pagination it should be a pattern of similar urls with pages that are numbered, if you detect this pattern and the numbers starts from a certain low number until a large number generate the rest of the urls even if they're not included,your goal here is to give as many urls for the user to choose from in order for them to do further scraping, you will have to deal with very different websites that can potientially have so many urls of images and other elements,detect only the urls that are clearly defining a pattern to show data on multiple pages, sometimes there is only a part of these urls and you have to combine it with the initial url, that will be provided for you at the end of this prompt.- The user can give you indications on how the pagination works for the specific website at the end of this prompt, if those indications are not empty pay special attention to them as they will directly help you understand the structure and the number of pages to generate.Provide the output as a JSON object with the following structure:{"page_urls": ["url1", "url2", "url3",...,"urlN"]}Do not include any additional text or explanations."""
8️⃣ Create the pagination_detector.py
Save the following as pagination_detector.py
:
python
# pagination_detector.pyimport osimport jsonfrom typing import List, Dict, Tuple, Unionfrom pydantic import BaseModel, Field, ValidationErrorimport tiktokenfrom dotenv import load_dotenvfrom openai import OpenAIimport google.generativeai as genaifrom groq import Groqimport openaifrom api_management import get_api_keyfrom assets import PROMPT_PAGINATION, PRICING, LLAMA_MODEL_FULLNAME, GROQ_LLAMA_MODEL_FULLNAMEload_dotenv()import loggingclass PaginationData(BaseModel):page_urls: List[str] = Field(default_factory=list, description="List of pagination URLs, including 'Next' button URL if present")def calculate_pagination_price(token_counts: Dict[str, int], model: str) -> float:"""Calculate the price for pagination based on token counts and the selected model.Args:token_counts (Dict[str, int]): A dictionary containing 'input_tokens' and 'output_tokens'.model (str): The name of the selected model.Returns:float: The total price for the pagination operation."""input_tokens = token_counts['input_tokens']output_tokens = token_counts['output_tokens']input_price = input_tokens * PRICING[model]['input']output_price = output_tokens * PRICING[model]['output']return input_price + output_pricedef detect_pagination_elements(url: str, indications: str, selected_model: str, markdown_content: str) -> Tuple[Union[PaginationData, Dict, str], Dict, float]:try:"""Uses AI models to analyze markdown content and extract pagination elements.Args:selected_model (str): The name of the OpenAI model to use.markdown_content (str): The markdown content to analyze.Returns:Tuple[PaginationData, Dict, float]: Parsed pagination data, token counts, and pagination price."""prompt_pagination = PROMPT_PAGINATION+"\n The url of the page to extract pagination from "+url+"if the urls that you find are not complete combine them intelligently in a way that fit the pattern **ALWAYS GIVE A FULL URL**"if indications != "":prompt_pagination +=PROMPT_PAGINATION+"\n\n these are the users indications that, pay special attention to them: "+indications+"\n\n below are the markdowns of the website: \n\n"else:prompt_pagination +=PROMPT_PAGINATION+"\n There are no user indications in this case just apply the logic described. \n\n below are the markdowns of the website: \n\n"if selected_model in ["gpt-4o-mini", "gpt-4o-2024-08-06"]:# Use OpenAI APIclient = OpenAI(api_key=get_api_key('OPENAI_API_KEY'))completion = client.beta.chat.completions.parse(model=selected_model,messages=[{"role": "system", "content": prompt_pagination},{"role": "user", "content": markdown_content},],response_format=PaginationData)# Extract the parsed responseparsed_response = completion.choices[0].message.parsed# Calculate tokens using tiktokenencoder = tiktoken.encoding_for_model(selected_model)input_token_count = len(encoder.encode(markdown_content))output_token_count = len(encoder.encode(json.dumps(parsed_response.dict())))token_counts = {"input_tokens": input_token_count,"output_tokens": output_token_count}# Calculate the pricepagination_price = calculate_pagination_price(token_counts, selected_model)return parsed_response, token_counts, pagination_priceelif selected_model == "gemini-1.5-flash":# Use Google Gemini APIgenai.configure(api_key=get_api_key("GOOGLE_API_KEY"))model = genai.GenerativeModel('gemini-1.5-flash',generation_config={"response_mime_type": "application/json","response_schema": PaginationData})prompt = f"{prompt_pagination}\n{markdown_content}"# Count input tokens using Gemini's methodinput_tokens = model.count_tokens(prompt)completion = model.generate_content(prompt)# Extract token counts from usage_metadatausage_metadata = completion.usage_metadatatoken_counts = {"input_tokens": usage_metadata.prompt_token_count,"output_tokens": usage_metadata.candidates_token_count}# Get the resultresponse_content = completion.text# Log the response content and its typelogging.info(f"Gemini Flash response type: {type(response_content)}")logging.info(f"Gemini Flash response content: {response_content}")# Try to parse the response as JSONtry:parsed_data = json.loads(response_content)if isinstance(parsed_data, dict) and 'page_urls' in parsed_data:pagination_data = PaginationData(**parsed_data)else:pagination_data = PaginationData(page_urls=[])except json.JSONDecodeError:logging.error("Failed to parse Gemini Flash response as JSON")pagination_data = PaginationData(page_urls=[])# Calculate the pricepagination_price = calculate_pagination_price(token_counts, selected_model)return pagination_data, token_counts, pagination_priceelif selected_model == "Llama3.1 8B":# Use Llama model via OpenAI API pointing to local serveropenai.api_key = "lm-studio"openai.api_base = "http://localhost:1234/v1"response = openai.ChatCompletion.create(model=LLAMA_MODEL_FULLNAME,messages=[{"role": "system", "content": prompt_pagination},{"role": "user", "content": markdown_content},],temperature=0.7,)response_content = response['choices'][0]['message']['content'].strip()# Try to parse the JSONtry:pagination_data = json.loads(response_content)except json.JSONDecodeError:pagination_data = {"next_buttons": [], "page_urls": []}# Token countstoken_counts = {"input_tokens": response['usage']['prompt_tokens'],"output_tokens": response['usage']['completion_tokens']}# Calculate the pricepagination_price = calculate_pagination_price(token_counts, selected_model)return pagination_data, token_counts, pagination_priceelif selected_model == "Groq Llama3.1 70b":# Use Groq clientclient = Groq(api_key=get_api_key("GROQ_API_KEY"))response = client.chat.completions.create(model=GROQ_LLAMA_MODEL_FULLNAME,messages=[{"role": "system", "content": prompt_pagination},{"role": "user", "content": markdown_content},],)response_content = response.choices[0].message.content.strip()# Try to parse the JSONtry:pagination_data = json.loads(response_content)except json.JSONDecodeError:pagination_data = {"page_urls": []}# Token countstoken_counts = {"input_tokens": response.usage.prompt_tokens,"output_tokens": response.usage.completion_tokens}# Calculate the pricepagination_price = calculate_pagination_price(token_counts, selected_model)'''# Ensure the pagination_data is a dictionaryif isinstance(pagination_data, PaginationData):pagination_data = pagination_data.model_dump()elif not isinstance(pagination_data, dict):pagination_data = {"page_urls": []}'''return pagination_data, token_counts, pagination_priceelse:raise ValueError(f"Unsupported model: {selected_model}")except Exception as e:logging.error(f"An error occurred in detect_pagination_elements: {e}")# Return default values if an error occursreturn PaginationData(page_urls=[]), {"input_tokens": 0, "output_tokens": 0}, 0.0
9️⃣ Create the api_managment.py
Save the following as api_managment.py
:
python
import streamlit as stimport osdef get_api_key(api_key_name):# Check if the API key from the sidebar is present, else fallback to the .env fileif api_key_name == 'OPENAI_API_KEY':return st.session_state['openai_api_key'] or os.getenv(api_key_name)elif api_key_name == 'GOOGLE_API_KEY':return st.session_state['gemini_api_key'] or os.getenv(api_key_name)elif api_key_name == 'GROQ_API_KEY':return st.session_state['groq_api_key'] or os.getenv(api_key_name)else:return os.getenv(api_key_name)
1️⃣0️⃣ Run the Streamlit App
Run the following command:
bash
streamlit run streamlit_app.py