ScrapeMaster 4.0 - Installation Guide

curve arrowDiscover the project in action

Watch Video

1️⃣ Create a Virtual Environment

Run the following command to create and activate a virtual environment:

bash
python -m venv venv

2️⃣ Install Dependencies

Create a requirements.txt file and copy the following dependencies:

plaintext
openai
python-dotenv
pandas
pydantic
requests
beautifulsoup4
html2text
tiktoken
selenium
readability-lxml
streamlit
streamlit-tags
openpyxl

Then install all dependencies with:

bash
pip install -r requirements.txt

3️⃣ Add Your API Key

Create a .env file and add your OpenAI API key:

plaintext
OPENAI_API_KEY=sk-xxxxxxxx(place your own key)
GOOGLE_API_KEY=AIzaSyxxxxxxx
GROQ_API_KEY=gskxxxxxxxxx

4️⃣ Download ChromeDriver

Download ChromeDriver from the official website:Chrome for Testing availability

5️⃣ Create the Scraper Script

Save the following script as scraper.py:

python
import os
import random
import time
import re
import json
from datetime import datetime
from typing import List, Dict, Type
import pandas as pd
from bs4 import BeautifulSoup
from pydantic import BaseModel, Field, create_model
import html2text
import tiktoken
import streamlit as st
from dotenv import load_dotenv
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.common.by import By
from selenium.webdriver.common.action_chains import ActionChains
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from webdriver_manager.chrome import ChromeDriverManager
from openai import OpenAI
import google.generativeai as genai
from groq import Groq
from api_management import get_api_key
from assets import USER_AGENTS,PRICING,HEADLESS_OPTIONS,SYSTEM_MESSAGE,USER_MESSAGE,LLAMA_MODEL_FULLNAME,GROQ_LLAMA_MODEL_FULLNAME,HEADLESS_OPTIONS_DOCKER
load_dotenv()
# Set up the Chrome WebDriver options
def is_running_in_docker():
"""
Detect if the app is running inside a Docker container.
This checks if the '/proc/1/cgroup' file contains 'docker'.
"""
try:
with open("/proc/1/cgroup", "rt") as file:
return "docker" in file.read()
except Exception:
return False
def setup_selenium(attended_mode=False):
options = Options()
service = Service(ChromeDriverManager().install())
# Apply headless options based on whether the code is running in Docker
if is_running_in_docker():
# Running inside Docker, use Docker-specific headless options
for option in HEADLESS_OPTIONS_DOCKER:
options.add_argument(option)
else:
# Not running inside Docker, use the normal headless options
for option in HEADLESS_OPTIONS:
options.add_argument(option)
# Initialize the WebDriver
driver = webdriver.Chrome(service=service, options=options)
return driver
def fetch_html_selenium(url, attended_mode=False, driver=None):
if driver is None:
driver = setup_selenium(attended_mode)
should_quit = True
if not attended_mode:
driver.get(url)
else:
should_quit = False
# Do not navigate to the URL if in attended mode and driver is already initialized
if not attended_mode:
driver.get(url)
try:
if not attended_mode:
# Add more realistic actions like scrolling
driver.execute_script("window.scrollTo(0, document.body.scrollHeight/2);")
time.sleep(random.uniform(1.1, 1.8))
driver.execute_script("window.scrollTo(0, document.body.scrollHeight/1.2);")
time.sleep(random.uniform(1.1, 1.8))
driver.execute_script("window.scrollTo(0, document.body.scrollHeight/1);")
time.sleep(random.uniform(1.1, 1.8))
# Get the page source from the current page
html = driver.page_source
return html
finally:
if should_quit:
driver.quit()
def clean_html(html_content):
soup = BeautifulSoup(html_content, 'html.parser')
# Remove headers and footers based on common HTML tags or classes
for element in soup.find_all(['header', 'footer']):
element.decompose() # Remove these tags and their content
return str(soup)
def html_to_markdown_with_readability(html_content):
cleaned_html = clean_html(html_content)
# Convert to markdown
markdown_converter = html2text.HTML2Text()
markdown_converter.ignore_links = False
markdown_content = markdown_converter.handle(cleaned_html)
return markdown_content
def save_raw_data(raw_data: str, output_folder: str, file_name: str):
"""Save raw markdown data to the specified output folder."""
os.makedirs(output_folder, exist_ok=True)
raw_output_path = os.path.join(output_folder, file_name)
with open(raw_output_path, 'w', encoding='utf-8') as f:
f.write(raw_data)
print(f"Raw data saved to {raw_output_path}")
return raw_output_path
def create_dynamic_listing_model(field_names: List[str]) -> Type[BaseModel]:
"""
Dynamically creates a Pydantic model based on provided fields.
field_name is a list of names of the fields to extract from the markdown.
"""
# Create field definitions using aliases for Field parameters
field_definitions = {field: (str, ...) for field in field_names}
# Dynamically create the model with all field
return create_model('DynamicListingModel', **field_definitions)
def create_listings_container_model(listing_model: Type[BaseModel]) -> Type[BaseModel]:
"""
Create a container model that holds a list of the given listing model.
"""
return create_model('DynamicListingsContainer', listings=(List[listing_model], ...))
def trim_to_token_limit(text, model, max_tokens=120000):
encoder = tiktoken.encoding_for_model(model)
tokens = encoder.encode(text)
if len(tokens) > max_tokens:
trimmed_text = encoder.decode(tokens[:max_tokens])
return trimmed_text
return text
def generate_system_message(listing_model: BaseModel) -> str:
"""
Dynamically generate a system message based on the fields in the provided listing model.
"""
# Use the model_json_schema() method to introspect the Pydantic model
schema_info = listing_model.model_json_schema()
# Extract field descriptions from the schema
field_descriptions = []
for field_name, field_info in schema_info["properties"].items():
# Get the field type from the schema info
field_type = field_info["type"]
field_descriptions.append(f'"{field_name}": "{field_type}"')
# Create the JSON schema structure for the listings
schema_structure = ",\n".join(field_descriptions)
# Generate the system message dynamically
system_message = f"""
You are an intelligent text extraction and conversion assistant. Your task is to extract structured information
from the given text and convert it into a pure JSON format. The JSON should contain only the structured data extracted from the text,
with no additional commentary, explanations, or extraneous information.
You could encounter cases where you can't find the data of the fields you have to extract or the data will be in a foreign language.
Please process the following text and provide the output in pure JSON format with no words before or after the JSON:
Please ensure the output strictly follows this schema:
{{
"listings": [
{{
{schema_structure}
}}
]
}} """
return system_message
def format_data(data, DynamicListingsContainer, DynamicListingModel, selected_model):
token_counts = {}
if selected_model in ["gpt-4o-mini", "gpt-4o-2024-08-06"]:
# Use OpenAI API
client = OpenAI(api_key=get_api_key('OPENAI_API_KEY'))
completion = client.beta.chat.completions.parse(
model=selected_model,
messages=[
{"role": "system", "content": SYSTEM_MESSAGE},
{"role": "user", "content": USER_MESSAGE + data},
],
response_format=DynamicListingsContainer
)
# Calculate tokens using tiktoken
encoder = tiktoken.encoding_for_model(selected_model)
input_token_count = len(encoder.encode(USER_MESSAGE + data))
output_token_count = len(encoder.encode(json.dumps(completion.choices[0].message.parsed.dict())))
token_counts = {
"input_tokens": input_token_count,
"output_tokens": output_token_count
}
return completion.choices[0].message.parsed, token_counts
elif selected_model == "gemini-1.5-flash":
# Use Google Gemini API
genai.configure(api_key=get_api_key("GOOGLE_API_KEY"))
model = genai.GenerativeModel('gemini-1.5-flash',
generation_config={
"response_mime_type": "application/json",
"response_schema": DynamicListingsContainer
})
prompt = SYSTEM_MESSAGE + "\n" + USER_MESSAGE + data
# Count input tokens using Gemini's method
input_tokens = model.count_tokens(prompt)
completion = model.generate_content(prompt)
# Extract token counts from usage_metadata
usage_metadata = completion.usage_metadata
token_counts = {
"input_tokens": usage_metadata.prompt_token_count,
"output_tokens": usage_metadata.candidates_token_count
}
return completion.text, token_counts
elif selected_model == "Llama3.1 8B":
# Dynamically generate the system message based on the schema
sys_message = generate_system_message(DynamicListingModel)
# print(SYSTEM_MESSAGE)
# Point to the local server
client = OpenAI(base_url="http://localhost:1234/v1", api_key="lm-studio")
completion = client.chat.completions.create(
model=LLAMA_MODEL_FULLNAME, #change this if needed (use a better model)
messages=[
{"role": "system", "content": sys_message},
{"role": "user", "content": USER_MESSAGE + data}
],
temperature=0.7,
)
# Extract the content from the response
response_content = completion.choices[0].message.content
print(response_content)
# Convert the content from JSON string to a Python dictionary
parsed_response = json.loads(response_content)
# Extract token usage
token_counts = {
"input_tokens": completion.usage.prompt_tokens,
"output_tokens": completion.usage.completion_tokens
}
return parsed_response, token_counts
elif selected_model== "Groq Llama3.1 70b":
# Dynamically generate the system message based on the schema
sys_message = generate_system_message(DynamicListingModel)
# print(SYSTEM_MESSAGE)
# Point to the local server
client = Groq(api_key=get_api_key("GROQ_API_KEY"),)
completion = client.chat.completions.create(
messages=[
{"role": "system","content": sys_message},
{"role": "user","content": USER_MESSAGE + data}
],
model=GROQ_LLAMA_MODEL_FULLNAME,
)
# Extract the content from the response
response_content = completion.choices[0].message.content
# Convert the content from JSON string to a Python dictionary
parsed_response = json.loads(response_content)
# completion.usage
token_counts = {
"input_tokens": completion.usage.prompt_tokens,
"output_tokens": completion.usage.completion_tokens
}
return parsed_response, token_counts
else:
raise ValueError(f"Unsupported model: {selected_model}")
def save_formatted_data(formatted_data, output_folder: str, json_file_name: str, excel_file_name: str):
"""Save formatted data as JSON and Excel in the specified output folder."""
os.makedirs(output_folder, exist_ok=True)
# Parse the formatted data if it's a JSON string (from Gemini API)
if isinstance(formatted_data, str):
try:
formatted_data_dict = json.loads(formatted_data)
except json.JSONDecodeError:
raise ValueError("The provided formatted data is a string but not valid JSON.")
else:
# Handle data from OpenAI or other sources
formatted_data_dict = formatted_data.dict() if hasattr(formatted_data, 'dict') else formatted_data
# Save the formatted data as JSON
json_output_path = os.path.join(output_folder, json_file_name)
with open(json_output_path, 'w', encoding='utf-8') as f:
json.dump(formatted_data_dict, f, indent=4)
print(f"Formatted data saved to JSON at {json_output_path}")
# Prepare data for DataFrame
if isinstance(formatted_data_dict, dict):
# If the data is a dictionary containing lists, assume these lists are records
data_for_df = next(iter(formatted_data_dict.values())) if len(formatted_data_dict) == 1 else formatted_data_dict
elif isinstance(formatted_data_dict, list):
data_for_df = formatted_data_dict
else:
raise ValueError("Formatted data is neither a dictionary nor a list, cannot convert to DataFrame")
# Create DataFrame
try:
df = pd.DataFrame(data_for_df)
print("DataFrame created successfully.")
# Save the DataFrame to an Excel file
excel_output_path = os.path.join(output_folder, excel_file_name)
df.to_excel(excel_output_path, index=False)
print(f"Formatted data saved to Excel at {excel_output_path}")
return df
except Exception as e:
print(f"Error creating DataFrame or saving Excel: {str(e)}")
return None
def calculate_price(token_counts, model):
input_token_count = token_counts.get("input_tokens", 0)
output_token_count = token_counts.get("output_tokens", 0)
# Calculate the costs
input_cost = input_token_count * PRICING[model]["input"]
output_cost = output_token_count * PRICING[model]["output"]
total_cost = input_cost + output_cost
return input_token_count, output_token_count, total_cost
def generate_unique_folder_name(url):
timestamp = datetime.now().strftime('%Y_%m_%d__%H_%M_%S')
url_name = re.sub(r'\W+', '_', url.split('//')[1].split('/')[0]) # Extract domain name and replace non-alphanumeric characters
return f"{url_name}_{timestamp}"
def scrape_url(url: str, fields: List[str], selected_model: str, output_folder: str, file_number: int, markdown: str):
"""Scrape a single URL and save the results."""
try:
# Save raw data
save_raw_data(markdown, output_folder, f'rawData_{file_number}.md')
# Create the dynamic listing model
DynamicListingModel = create_dynamic_listing_model(fields)
# Create the container model that holds a list of the dynamic listing models
DynamicListingsContainer = create_listings_container_model(DynamicListingModel)
# Format data
formatted_data, token_counts = format_data(markdown, DynamicListingsContainer, DynamicListingModel, selected_model)
# Save formatted data
save_formatted_data(formatted_data, output_folder, f'sorted_data_{file_number}.json', f'sorted_data_{file_number}.xlsx')
# Calculate and return token usage and cost
input_tokens, output_tokens, total_cost = calculate_price(token_counts, selected_model)
return input_tokens, output_tokens, total_cost, formatted_data
except Exception as e:
print(f"An error occurred while processing {url}: {e}")
return 0, 0, 0, None
# Remove the main execution block if it's not needed for testing purposes

6️⃣ Create the Streamlit App

Save the following as streamlit_app.py:

python
# streamlit_app.py
import streamlit as st
from streamlit_tags import st_tags_sidebar
import pandas as pd
import json
from datetime import datetime
from scraper import (
fetch_html_selenium,
save_raw_data,
format_data,
save_formatted_data,
calculate_price,
html_to_markdown_with_readability,
create_dynamic_listing_model,
create_listings_container_model,
scrape_url,
setup_selenium,
generate_unique_folder_name
)
from pagination_detector import detect_pagination_elements
import re
from urllib.parse import urlparse
from assets import PRICING
import os
# Initialize Streamlit app
st.set_page_config(page_title="Universal Web Scraper", page_icon="🦑")
st.title("Universal Web Scraper 🦑")
# Initialize session state variables
if 'scraping_state' not in st.session_state:
st.session_state['scraping_state'] = 'idle' # Possible states: 'idle', 'waiting', 'scraping', 'completed'
if 'results' not in st.session_state:
st.session_state['results'] = None
if 'driver' not in st.session_state:
st.session_state['driver'] = None
# Sidebar components
st.sidebar.title("Web Scraper Settings")
# API Keys
with st.sidebar.expander("API Keys", expanded=False):
st.session_state['openai_api_key'] = st.text_input("OpenAI API Key", type="password")
st.session_state['gemini_api_key'] = st.text_input("Gemini API Key", type="password")
st.session_state['groq_api_key'] = st.text_input("Groq API Key", type="password")
# Model selection
model_selection = st.sidebar.selectbox("Select Model", options=list(PRICING.keys()), index=0)
# URL input
url_input = st.sidebar.text_input("Enter URL(s) separated by whitespace")
# Process URLs
urls = url_input.strip().split()
num_urls = len(urls)
# Fields to extract
show_tags = st.sidebar.toggle("Enable Scraping")
fields = []
if show_tags:
fields = st_tags_sidebar(
label='Enter Fields to Extract:',
text='Press enter to add a field',
value=[],
suggestions=[],
maxtags=-1,
key='fields_input'
)
st.sidebar.markdown("---")
# Conditionally display Pagination and Attended Mode options
if num_urls <= 1:
# Pagination settings
use_pagination = st.sidebar.toggle("Enable Pagination")
pagination_details = ""
if use_pagination:
pagination_details = st.sidebar.text_input(
"Enter Pagination Details (optional)",
help="Describe how to navigate through pages (e.g., 'Next' button class, URL pattern)"
)
st.sidebar.markdown("---")
# Attended mode toggle
attended_mode = st.sidebar.toggle("Enable Attended Mode")
else:
# Multiple URLs entered; disable Pagination and Attended Mode
use_pagination = False
attended_mode = False
# Inform the user
st.sidebar.info("Pagination and Attended Mode are disabled when multiple URLs are entered.")
st.sidebar.markdown("---")
# Main action button
if st.sidebar.button("LAUNCH SCRAPER", type="primary"):
if url_input.strip() == "":
st.error("Please enter at least one URL.")
elif show_tags and len(fields) == 0:
st.error("Please enter at least one field to extract.")
else:
# Set up scraping parameters in session state
st.session_state['urls'] = url_input.strip().split()
st.session_state['fields'] = fields
st.session_state['model_selection'] = model_selection
st.session_state['attended_mode'] = attended_mode
st.session_state['use_pagination'] = use_pagination
st.session_state['pagination_details'] = pagination_details
st.session_state['scraping_state'] = 'waiting' if attended_mode else 'scraping'
# Scraping logic
if st.session_state['scraping_state'] == 'waiting':
# Attended mode: set up driver and wait for user interaction
if st.session_state['driver'] is None:
st.session_state['driver'] = setup_selenium(attended_mode=True)
st.session_state['driver'].get(st.session_state['urls'][0])
st.write("Perform any required actions in the browser window that opened.")
st.write("Navigate to the page you want to scrape.")
st.write("When ready, click the 'Resume Scraping' button.")
else:
st.write("Browser window is already open. Perform your actions and click 'Resume Scraping'.")
if st.button("Resume Scraping"):
st.session_state['scraping_state'] = 'scraping'
st.rerun()
elif st.session_state['scraping_state'] == 'scraping':
with st.spinner('Scraping in progress...'):
# Perform scraping
output_folder = os.path.join('output', generate_unique_folder_name(st.session_state['urls'][0]))
os.makedirs(output_folder, exist_ok=True)
total_input_tokens = 0
total_output_tokens = 0
total_cost = 0
all_data = []
pagination_info = None
driver = st.session_state.get('driver', None)
if st.session_state['attended_mode'] and driver is not None:
# Attended mode: scrape the current page without navigating
# Fetch HTML from the current page
raw_html = fetch_html_selenium(st.session_state['urls'][0], attended_mode=True, driver=driver)
markdown = html_to_markdown_with_readability(raw_html)
save_raw_data(markdown, output_folder, f'rawData_1.md')
current_url = driver.current_url # Use the current URL for logging and saving purposes
# Detect pagination if enabled
if st.session_state['use_pagination']:
pagination_data, token_counts, pagination_price = detect_pagination_elements(
current_url, st.session_state['pagination_details'], st.session_state['model_selection'], markdown
)
# Check if pagination_data is a dict or a model with 'page_urls' attribute
if isinstance(pagination_data, dict):
page_urls = pagination_data.get("page_urls", [])
else:
page_urls = pagination_data.page_urls
pagination_info = {
"page_urls": page_urls,
"token_counts": token_counts,
"price": pagination_price
}
# Scrape data if fields are specified
if show_tags:
# Create dynamic models
DynamicListingModel = create_dynamic_listing_model(st.session_state['fields'])
DynamicListingsContainer = create_listings_container_model(DynamicListingModel)
# Format data
formatted_data, token_counts = format_data(
markdown, DynamicListingsContainer, DynamicListingModel, st.session_state['model_selection']
)
input_tokens, output_tokens, cost = calculate_price(token_counts, st.session_state['model_selection'])
total_input_tokens += input_tokens
total_output_tokens += output_tokens
total_cost += cost
# Save formatted data
df = save_formatted_data(formatted_data, output_folder, f'sorted_data_1.json', f'sorted_data_1.xlsx')
all_data.append(formatted_data)
else:
# Non-attended mode or driver not available
for i, url in enumerate(st.session_state['urls'], start=1):
# Fetch HTML
raw_html = fetch_html_selenium(url, attended_mode=False)
markdown = html_to_markdown_with_readability(raw_html)
save_raw_data(markdown, output_folder, f'rawData_{i}.md')
# Detect pagination if enabled and only for the first URL
if st.session_state['use_pagination'] and i == 1:
pagination_data, token_counts, pagination_price = detect_pagination_elements(
url, st.session_state['pagination_details'], st.session_state['model_selection'], markdown
)
# Check if pagination_data is a dict or a model with 'page_urls' attribute
if isinstance(pagination_data, dict):
page_urls = pagination_data.get("page_urls", [])
else:
page_urls = pagination_data.page_urls
pagination_info = {
"page_urls": page_urls,
"token_counts": token_counts,
"price": pagination_price
}
# Scrape data if fields are specified
if show_tags:
# Create dynamic models
DynamicListingModel = create_dynamic_listing_model(st.session_state['fields'])
DynamicListingsContainer = create_listings_container_model(DynamicListingModel)
# Format data
formatted_data, token_counts = format_data(
markdown, DynamicListingsContainer, DynamicListingModel, st.session_state['model_selection']
)
input_tokens, output_tokens, cost = calculate_price(token_counts, st.session_state['model_selection'])
total_input_tokens += input_tokens
total_output_tokens += output_tokens
total_cost += cost
# Save formatted data
df = save_formatted_data(formatted_data, output_folder, f'sorted_data_{i}.json', f'sorted_data_{i}.xlsx')
all_data.append(formatted_data)
# Clean up driver if used
if driver:
driver.quit()
st.session_state['driver'] = None
# Save results
st.session_state['results'] = {
'data': all_data,
'input_tokens': total_input_tokens,
'output_tokens': total_output_tokens,
'total_cost': total_cost,
'output_folder': output_folder,
'pagination_info': pagination_info
}
st.session_state['scraping_state'] = 'completed'
# Display results
if st.session_state['scraping_state'] == 'completed' and st.session_state['results']:
results = st.session_state['results']
all_data = results['data']
total_input_tokens = results['input_tokens']
total_output_tokens = results['output_tokens']
total_cost = results['total_cost']
output_folder = results['output_folder']
pagination_info = results['pagination_info']
# Display scraping details
if show_tags:
st.subheader("Scraping Results")
for i, data in enumerate(all_data, start=1):
st.write(f"Data from URL {i}:")
# Handle string data (convert to dict if it's JSON)
if isinstance(data, str):
try:
data = json.loads(data)
except json.JSONDecodeError:
st.error(f"Failed to parse data as JSON for URL {i}")
continue
if isinstance(data, dict):
if 'listings' in data and isinstance(data['listings'], list):
df = pd.DataFrame(data['listings'])
else:
# If 'listings' is not in the dict or not a list, use the entire dict
df = pd.DataFrame([data])
elif hasattr(data, 'listings') and isinstance(data.listings, list):
# Handle the case where data is a Pydantic model
listings = [item.dict() for item in data.listings]
df = pd.DataFrame(listings)
else:
st.error(f"Unexpected data format for URL {i}")
continue
# Display the dataframe
st.dataframe(df, use_container_width=True)
# Display token usage and cost
st.sidebar.markdown("---")
st.sidebar.markdown("### Scraping Details")
st.sidebar.markdown("#### Token Usage")
st.sidebar.markdown(f"*Input Tokens:* {total_input_tokens}")
st.sidebar.markdown(f"*Output Tokens:* {total_output_tokens}")
st.sidebar.markdown(f"**Total Cost:** :green-background[**${total_cost:.4f}**]")
# Download options
st.subheader("Download Extracted Data")
col1, col2 = st.columns(2)
with col1:
json_data = json.dumps(all_data, default=lambda o: o.dict() if hasattr(o, 'dict') else str(o), indent=4)
st.download_button(
"Download JSON",
data=json_data,
file_name="scraped_data.json"
)
with col2:
# Convert all data to a single DataFrame
all_listings = []
for data in all_data:
if isinstance(data, str):
try:
data = json.loads(data)
except json.JSONDecodeError:
continue
if isinstance(data, dict) and 'listings' in data:
all_listings.extend(data['listings'])
elif hasattr(data, 'listings'):
all_listings.extend([item.dict() for item in data.listings])
else:
all_listings.append(data)
combined_df = pd.DataFrame(all_listings)
st.download_button(
"Download CSV",
data=combined_df.to_csv(index=False),
file_name="scraped_data.csv"
)
st.success(f"Scraping completed. Results saved in {output_folder}")
# Display pagination info
if pagination_info:
st.markdown("---")
st.subheader("Pagination Information")
# Display token usage and cost using metrics
st.sidebar.markdown("---")
st.sidebar.markdown("### Pagination Details")
st.sidebar.markdown(f"**Number of Page URLs:** {len(pagination_info['page_urls'])}")
st.sidebar.markdown("#### Pagination Token Usage")
st.sidebar.markdown(f"*Input Tokens:* {pagination_info['token_counts']['input_tokens']}")
st.sidebar.markdown(f"*Output Tokens:* {pagination_info['token_counts']['output_tokens']}")
st.sidebar.markdown(f"**Pagination Cost:** :blue-background[**${pagination_info['price']:.4f}**]")
# Display page URLs in a table
st.write("**Page URLs:**")
# Make URLs clickable
pagination_df = pd.DataFrame(pagination_info["page_urls"], columns=["Page URLs"])
st.dataframe(
pagination_df,
column_config={
"Page URLs": st.column_config.LinkColumn("Page URLs")
},use_container_width=True
)
# Download pagination URLs
st.subheader("Download Pagination URLs")
col1, col2 = st.columns(2)
with col1:
st.download_button("Download Pagination CSV",data=pagination_df.to_csv(index=False),file_name="pagination_urls.csv")
with col2:
st.download_button("Download Pagination JSON",data=json.dumps(pagination_info['page_urls'], indent=4),file_name="pagination_urls.json")
# Reset scraping state
if st.sidebar.button("Clear Results"):
st.session_state['scraping_state'] = 'idle'
st.session_state['results'] = None
# If both scraping and pagination were performed, show totals under the pagination table
if show_tags and pagination_info:
st.markdown("---")
total_input_tokens_combined = total_input_tokens + pagination_info['token_counts']['input_tokens']
total_output_tokens_combined = total_output_tokens + pagination_info['token_counts']['output_tokens']
total_combined_cost = total_cost + pagination_info['price']
st.markdown("### Total Counts and Cost (Including Pagination)")
st.markdown(f"**Total Input Tokens:** {total_input_tokens_combined}")
st.markdown(f"**Total Output Tokens:** {total_output_tokens_combined}")
st.markdown(f"**Total Combined Cost:** :rainbow-background[**${total_combined_cost:.4f}**]")
# Helper function to generate unique folder names
def generate_unique_folder_name(url):
timestamp = datetime.now().strftime('%Y_%m_%d__%H_%M_%S')
# Parse the URL
parsed_url = urlparse(url)
# Extract the domain name
domain = parsed_url.netloc or parsed_url.path.split('/')[0]
# Remove 'www.' if present
domain = re.sub(r'^www\.', '', domain)
# Remove any non-alphanumeric characters and replace with underscores
clean_domain = re.sub(r'\W+', '_', domain)
return f"{clean_domain}_{timestamp}"

7️⃣ Create the assets.py

Save the following as assets.py:

python
"""
This module contains configuration variables and constants
that are used across different parts of the application.
"""
# List of user agents to mimic different users
USER_AGENTS = [
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.114 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:89.0) Gecko/20100101 Firefox/89.0",
"Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.96 Safari/537.36",
"Mozilla/5.0 (iPhone; CPU iPhone OS 14_6 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Mobile/15E148 Safari/604.1",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.107 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.93 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.1 Safari/605.1.15",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.82 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:91.0) Gecko/20100101 Firefox/91.0",
"Mozilla/5.0 (X11; Linux x86_64; rv:90.0) Gecko/20100101 Firefox/90.0",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.150 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.66 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 11_0_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.96 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.106 Safari/537.36",
"Mozilla/5.0 (X11; Linux x86_64; rv:89.0) Gecko/20100101 Firefox/89.0",
"Mozilla/5.0 (iPhone; CPU iPhone OS 13_6 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/13.1.2 Mobile/15E148 Safari/604.1",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Safari/605.1.15",
"Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.114 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:88.0) Gecko/20100101 Firefox/88.0",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.212 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 11_0_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Safari/605.1.15",
"Mozilla/5.0 (iPhone; CPU iPhone OS 13_5_1 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/13.0 Mobile/15E148 Safari/604.1",
"Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:91.0) Gecko/20100101 Firefox/91.0",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.212 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.114 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0.1 Safari/605.1.15",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:87.0) Gecko/20100101 Firefox/87.0",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.101 Safari/537.36",
"Mozilla/5.0 (iPhone; CPU iPhone OS 14_5_1 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Mobile/15E148 Safari/604.1",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.77 Safari/537.36",
"Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:89.0) Gecko/20100101 Firefox/89.0",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.77 Safari/537.36",
"Mozilla/5.0 (iPhone; CPU iPhone OS 14_4 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Mobile/15E148 Safari/604.1",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.85 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.85 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:86.0) Gecko/20100101 Firefox/86.0",
"Mozilla/5.0 (iPhone; CPU iPhone OS 14_3 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Mobile/15E148 Safari/604.1",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 11_2_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.114 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:85.0) Gecko/20100101 Firefox/85.0",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Safari/605.1.15",
"Mozilla/5.0 (X11; Linux x86_64; rv:85.0) Gecko/20100101 Firefox/85.0",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.150 Safari/537.36",
"Mozilla/5.0 (iPhone; CPU iPhone OS 13_7 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/13.0 Mobile/15E148 Safari/604.1",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.82 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Safari/605.1.15",
"Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.66 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.114 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.141 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.77 Safari/537.36",
"Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.77 Safari/537.36"
]
# Define the pricing for models without Batch API
PRICING = {
"gpt-4o-mini": {
"input": 0.150 / 1_000_000, # $0.150 per 1M input tokens
"output": 0.600 / 1_000_000, # $0.600 per 1M output tokens
},
"gpt-4o-2024-08-06": {
"input": 2.5 / 1_000_000, # $2.5 per 1M input tokens
"output": 10 / 1_000_000, # $10 per 1M output tokens
},
"gemini-1.5-flash": {
"input": 0.075 / 1_000_000, # $0.075 per 1M input tokens
"output": 0.30 / 1_000_000, # $0.30 per 1M output tokens
},
"Llama3.1 8B": {
"input": 0 , # Free
"output": 0 , # Free
},
"Groq Llama3.1 70b": {
"input": 0 , # Free
"output": 0 , # Free
},
# Add other models and their prices here if needed
}
# Timeout settings for web scraping
TIMEOUT_SETTINGS = {
"page_load": 30,
"script": 10
}
# Other reusable constants or configuration settings
HEADLESS_OPTIONS = ["--disable-gpu", "--disable-dev-shm-usage","--window-size=1920,1080","--disable-search-engine-choice-screen","--disable-blink-features=AutomationControlled"]
HEADLESS_OPTIONS_DOCKER = ["--headless=new","--no-sandbox","--disable-gpu", "--disable-dev-shm-usage","--disable-software-rasterizer","--disable-setuid-sandbox","--remote-debugging-port=9222","--disable-search-engine-choice-screen"]
#in case you don't need to open the website
##HEADLESS_OPTIONS=HEADLESS_OPTIONS+[ "--headless=new"]
#number of scrolls
NUMBER_SCROLL=2
LLAMA_MODEL_FULLNAME="lmstudio-community/Meta-Llama-3.1-8B-Instruct-GGUF"
GROQ_LLAMA_MODEL_FULLNAME="llama-3.1-70b-versatile"
SYSTEM_MESSAGE = """You are an intelligent text extraction and conversion assistant. Your task is to extract structured information
from the given text and convert it into a pure JSON format. The JSON should contain only the structured data extracted from the text,
with no additional commentary, explanations, or extraneous information.
You could encounter cases where you can't find the data of the fields you have to extract or the data will be in a foreign language.
Please process the following text and provide the output in pure JSON format with no words before or after the JSON:"""
USER_MESSAGE = f"Extract the following information from the provided text:\nPage content:\n\n"
PROMPT_PAGINATION = """
You are an assistant that extracts pagination elements from markdown content of websites your goal as a universal pagination scrapper of urls from all websites no matter how different they are.
Please extract the following:
- The url of the 'Next', 'More', 'See more', 'load more' or any other button indicating how to access the next page, if any, it should be 1 url and no more, if there are multiple urls with the same structure leave this empty.
- A list of page URLs for pagination it should be a pattern of similar urls with pages that are numbered, if you detect this pattern and the numbers starts from a certain low number until a large number generate the rest of the urls even if they're not included,
your goal here is to give as many urls for the user to choose from in order for them to do further scraping, you will have to deal with very different websites that can potientially have so many urls of images and other elements,
detect only the urls that are clearly defining a pattern to show data on multiple pages, sometimes there is only a part of these urls and you have to combine it with the initial url, that will be provided for you at the end of this prompt.
- The user can give you indications on how the pagination works for the specific website at the end of this prompt, if those indications are not empty pay special attention to them as they will directly help you understand the structure and the number of pages to generate.
Provide the output as a JSON object with the following structure:
{
"page_urls": ["url1", "url2", "url3",...,"urlN"]
}
Do not include any additional text or explanations.
"""

8️⃣ Create the pagination_detector.py

Save the following as pagination_detector.py:

python
# pagination_detector.py
import os
import json
from typing import List, Dict, Tuple, Union
from pydantic import BaseModel, Field, ValidationError
import tiktoken
from dotenv import load_dotenv
from openai import OpenAI
import google.generativeai as genai
from groq import Groq
import openai
from api_management import get_api_key
from assets import PROMPT_PAGINATION, PRICING, LLAMA_MODEL_FULLNAME, GROQ_LLAMA_MODEL_FULLNAME
load_dotenv()
import logging
class PaginationData(BaseModel):
page_urls: List[str] = Field(default_factory=list, description="List of pagination URLs, including 'Next' button URL if present")
def calculate_pagination_price(token_counts: Dict[str, int], model: str) -> float:
"""
Calculate the price for pagination based on token counts and the selected model.
Args:
token_counts (Dict[str, int]): A dictionary containing 'input_tokens' and 'output_tokens'.
model (str): The name of the selected model.
Returns:
float: The total price for the pagination operation.
"""
input_tokens = token_counts['input_tokens']
output_tokens = token_counts['output_tokens']
input_price = input_tokens * PRICING[model]['input']
output_price = output_tokens * PRICING[model]['output']
return input_price + output_price
def detect_pagination_elements(url: str, indications: str, selected_model: str, markdown_content: str) -> Tuple[Union[PaginationData, Dict, str], Dict, float]:
try:
"""
Uses AI models to analyze markdown content and extract pagination elements.
Args:
selected_model (str): The name of the OpenAI model to use.
markdown_content (str): The markdown content to analyze.
Returns:
Tuple[PaginationData, Dict, float]: Parsed pagination data, token counts, and pagination price.
"""
prompt_pagination = PROMPT_PAGINATION+"\n The url of the page to extract pagination from "+url+"if the urls that you find are not complete combine them intelligently in a way that fit the pattern **ALWAYS GIVE A FULL URL**"
if indications != "":
prompt_pagination +=PROMPT_PAGINATION+"\n\n these are the users indications that, pay special attention to them: "+indications+"\n\n below are the markdowns of the website: \n\n"
else:
prompt_pagination +=PROMPT_PAGINATION+"\n There are no user indications in this case just apply the logic described. \n\n below are the markdowns of the website: \n\n"
if selected_model in ["gpt-4o-mini", "gpt-4o-2024-08-06"]:
# Use OpenAI API
client = OpenAI(api_key=get_api_key('OPENAI_API_KEY'))
completion = client.beta.chat.completions.parse(
model=selected_model,
messages=[
{"role": "system", "content": prompt_pagination},
{"role": "user", "content": markdown_content},
],
response_format=PaginationData
)
# Extract the parsed response
parsed_response = completion.choices[0].message.parsed
# Calculate tokens using tiktoken
encoder = tiktoken.encoding_for_model(selected_model)
input_token_count = len(encoder.encode(markdown_content))
output_token_count = len(encoder.encode(json.dumps(parsed_response.dict())))
token_counts = {
"input_tokens": input_token_count,
"output_tokens": output_token_count
}
# Calculate the price
pagination_price = calculate_pagination_price(token_counts, selected_model)
return parsed_response, token_counts, pagination_price
elif selected_model == "gemini-1.5-flash":
# Use Google Gemini API
genai.configure(api_key=get_api_key("GOOGLE_API_KEY"))
model = genai.GenerativeModel(
'gemini-1.5-flash',
generation_config={
"response_mime_type": "application/json",
"response_schema": PaginationData
}
)
prompt = f"{prompt_pagination}\n{markdown_content}"
# Count input tokens using Gemini's method
input_tokens = model.count_tokens(prompt)
completion = model.generate_content(prompt)
# Extract token counts from usage_metadata
usage_metadata = completion.usage_metadata
token_counts = {
"input_tokens": usage_metadata.prompt_token_count,
"output_tokens": usage_metadata.candidates_token_count
}
# Get the result
response_content = completion.text
# Log the response content and its type
logging.info(f"Gemini Flash response type: {type(response_content)}")
logging.info(f"Gemini Flash response content: {response_content}")
# Try to parse the response as JSON
try:
parsed_data = json.loads(response_content)
if isinstance(parsed_data, dict) and 'page_urls' in parsed_data:
pagination_data = PaginationData(**parsed_data)
else:
pagination_data = PaginationData(page_urls=[])
except json.JSONDecodeError:
logging.error("Failed to parse Gemini Flash response as JSON")
pagination_data = PaginationData(page_urls=[])
# Calculate the price
pagination_price = calculate_pagination_price(token_counts, selected_model)
return pagination_data, token_counts, pagination_price
elif selected_model == "Llama3.1 8B":
# Use Llama model via OpenAI API pointing to local server
openai.api_key = "lm-studio"
openai.api_base = "http://localhost:1234/v1"
response = openai.ChatCompletion.create(
model=LLAMA_MODEL_FULLNAME,
messages=[
{"role": "system", "content": prompt_pagination},
{"role": "user", "content": markdown_content},
],
temperature=0.7,
)
response_content = response['choices'][0]['message']['content'].strip()
# Try to parse the JSON
try:
pagination_data = json.loads(response_content)
except json.JSONDecodeError:
pagination_data = {"next_buttons": [], "page_urls": []}
# Token counts
token_counts = {
"input_tokens": response['usage']['prompt_tokens'],
"output_tokens": response['usage']['completion_tokens']
}
# Calculate the price
pagination_price = calculate_pagination_price(token_counts, selected_model)
return pagination_data, token_counts, pagination_price
elif selected_model == "Groq Llama3.1 70b":
# Use Groq client
client = Groq(api_key=get_api_key("GROQ_API_KEY"))
response = client.chat.completions.create(
model=GROQ_LLAMA_MODEL_FULLNAME,
messages=[
{"role": "system", "content": prompt_pagination},
{"role": "user", "content": markdown_content},
],
)
response_content = response.choices[0].message.content.strip()
# Try to parse the JSON
try:
pagination_data = json.loads(response_content)
except json.JSONDecodeError:
pagination_data = {"page_urls": []}
# Token counts
token_counts = {
"input_tokens": response.usage.prompt_tokens,
"output_tokens": response.usage.completion_tokens
}
# Calculate the price
pagination_price = calculate_pagination_price(token_counts, selected_model)
'''# Ensure the pagination_data is a dictionary
if isinstance(pagination_data, PaginationData):
pagination_data = pagination_data.model_dump()
elif not isinstance(pagination_data, dict):
pagination_data = {"page_urls": []}'''
return pagination_data, token_counts, pagination_price
else:
raise ValueError(f"Unsupported model: {selected_model}")
except Exception as e:
logging.error(f"An error occurred in detect_pagination_elements: {e}")
# Return default values if an error occurs
return PaginationData(page_urls=[]), {"input_tokens": 0, "output_tokens": 0}, 0.0

9️⃣ Create the api_managment.py

Save the following as api_managment.py:

python
import streamlit as st
import os
def get_api_key(api_key_name):
# Check if the API key from the sidebar is present, else fallback to the .env file
if api_key_name == 'OPENAI_API_KEY':
return st.session_state['openai_api_key'] or os.getenv(api_key_name)
elif api_key_name == 'GOOGLE_API_KEY':
return st.session_state['gemini_api_key'] or os.getenv(api_key_name)
elif api_key_name == 'GROQ_API_KEY':
return st.session_state['groq_api_key'] or os.getenv(api_key_name)
else:
return os.getenv(api_key_name)

1️⃣0️⃣ Run the Streamlit App

Run the following command:

bash
streamlit run streamlit_app.py